A new approach to the 176 Lu puzzle  clock or thermometer? an astrophysical quest and a nuclear challenge  20 years of nuclear physics level schemes,

Slides:



Advertisements
Similar presentations
Saed Dababneh. Seventh Symposium on Use of Nuclear Techniques in Environmental Studies. Yarmouk University, JORDAN. 3-5 Sept Manipulated Gamma Spectroscopy:
Advertisements

Neutron detectors and spectrometers 1) Complicated reactions → strong dependency of efficiency on energy 2) Small efficiency → necessity of large volumes.
NE Introduction to Nuclear Science Spring 2012
Chapter 12 Spectroscopy and Structure Determination
Experimental Determination of Neutron Cross Sections of Yttrium by Activation Method by Barbara Geier Supervisors: Assoc. Prof Dr. Wolfgang Sprengel RNDr.
S-Process in C-Rich EMPS: predictions versus observations Sara Bisterzo (1) Roberto Gallino (1) Oscar Straniero (2) I. I. Ivans (3, 4) and Wako Aoki, Sean.
I. Dillmann Institut für Kernphysik, Forschungszentrum Karlsruhe KADoNiS The Sequel to the “Bao et al.” neutron capture compilations.
Nuclear structure information from cross section measurements A.Negret, C. Borcea, A. Olacel Horia Hulubei National Institute for Physics and Nuclear Engineering,
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Introduction to stellar reaction rates Nuclear reactions generate energy create new isotopes and elements Notation for stellar rates: p 12 C 13 N  12.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
12C(p,g)13N g III. Nuclear Reaction Rates 12C 13N Nuclear reactions
S-Process in low metallicity Pb stars: comparison between new theoretical results and spectroscopic observations Sara Bisterzo (1) Roberto Gallino (1),
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Joint IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies Student’s presentation Calculation of correction factors for neutron.
ELBE Neutron Source IAEA TC Meeting “Nuclear Data for IFMIF”, FZ Karlsruhe, October 4-6, 2005 Klaus Seidel Technische Universität Dresden.
E.Chiaveri on behalf of the n_TOF Collaboration n_TOF Collaboration/Collaboration Board Lisbon, 13/15 December 2011 Proposal for Experimental Area 2(EAR-2)
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
14th International Conference on Nuclear Reaction Mechanisms – Varenna, June , 2015 G. Tagliente – INFN Bari Recent results in Nuclear Astrophysics.
Neutron capture at the s-process branching points 171 Tm and 204 Tl Spokespersons: C. Guerrero (U.Sevilla/CERN) and C. Domingo-Pardo (CSIC-IFIC) Close.
Neutron-induced reactions Michael Heil GSI Darmstadt Or How can one measure neutron capture cross sections in the keV range on small scale facilities?
Measurement of Neutron Total Cross Sections of Natural Hafnium and Tantalum at Pohang Neutron Facility Course Title: Experimental Method and Data Process.
Photonuclear reactions in astrophysics
Neutron capture cross section measurements for nuclear astrophysics at n_TOF Michael Heil on behalf of the n_TOF collaboration Outline   The CERN n_TOF.
Mass spectroscopy – learning objectives Outline the early developments in mass spectrometry. Outline the use of mass spectrometry in the determination.
Astrophysics with spallation sources  (n,  ) cross sections for the s process  operating spallation facilities: LANSCE, J-PARC, n_TOF & examples for.
Neutron inelastic scattering measurements at the GELINA facility of EC-JRC-IRMM A. Negret 1, C. Borcea 1, A. Plompen 2 1 NIPNE-HH, Romania 2 EC-JRC-IRMM,
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Athens, July 9, 2008 The two-step  cascade method as a tool for studying  -ray strength functions Milan Krtička.
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Principles of Spectrometry.
The Astrophysical 187 Re/ 187 Os Ratio: First Direct Measurement of the 187 Re(n, 2nγ) 186m Re Destruction Cross Section J. H. Kelley, NC State U. and.
The s-process in low metallicity stars Roberto Gallino (1) Sara Bisterzo (1) Oscar Straniero (2) I. I. Ivans (3, 4) F. Kaeppeler (5) (1) Dipartimento di.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
Prepared By: A.K.M. Moinul Haque Meaze * Center for High Energy Physics, Kyungpook National University Daegu , Korea Course Title : Phenomenology.
Slow neutron captures in stars
Two New Techniques for Determining J  ’s of Neutron Resonances, and the Search for Non-Statistical Effects in Neutron Capture Paul Koehler Physics Division,
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
CERN-INTC /INTC-P-415 Tackling the s-process stellar neutron density via the 147 Pm(n,  ) reaction Spokespersons: C. Guerrero (U. Sevilla) and.
Neutron Capture Cross Sections from 1 MeV to 2 MeV by Activation Measurements Korea Institutes of Geoscience and Mineral Resource G.D.Kim, T.K.Yang, Y.S.Kim,
Santa Tecla, 2-9 October 2005Marita Mosconi,FZK1 Re/Os cosmochronometer: measurements of relevant Os cross sections Marita Mosconi 1, Alberto Mengoni 2,
Data Needs in Nuclear Astrophysics, Basel, June 23-25, 2006 Nuclear Astrophysics Resources of the National Nuclear Data Center B. Pritychenko*, M.W. Herman,
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Wir schaffen Wissen – heute für morgen Paul Scherrer Institut Preparation of 60 Fe, 44 Ti, 53 Mn, 26 Al and 7/10 Be samples for astrophysical experiments.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
Resonance and Maxwellian cross sections of the s-process branchings 147 Pm, 171 Tm and 204 Tl (& 79 Se) Spokespersons: C. Guerrero (US/CERN) and C. Domingo-Pardo.
Neutron induced reactions: Experiments and Theory 1.BANG! Stuff with light nuclei (BBN, Coul_diss exp, C x-sections) 2.The Metals & the s-process (canonical.
1 Current quests in nucleosynthesis: present and future neutron-induced reactions measurements Javier Praena Universidad de Sevilla, Seville, SPAIN Centro.
1 Cross sections of neutron reactions in S-Cl-Ar region in the s-process of nucleosynthesis C. Oprea 1, P. J. Szalanski 2, A. Ioan 1, P. M. Potlog 3 1Frank.
High accuracy neutron inelastic cross section measurements on 206 Pb A.Negret 1, L.C. Mihailescu 1,2, C. Borcea 1, Ph. Dessagne 3, K.H. Guber 4, M. Kerveno.
Zirconium capture measurements:
René Reifarth GSI Darmstadt/University of Frankfurt
on behalf of the n_TOF Collaboration
Nuclear Astrophysics at the n_TOF facility at CERN
Experimental approaches to s-process branchings
A. Casanovas (UPC), C. Domingo-Pardo (IFIC), C. Guerrero (U
the s process: messages from stellar He burning
The nucleosynthesis of heavy elements in Stars: the key isotope 25Mg
n_TOF annual meeting December 2011, Lisbon
Definition of a standard neutron field with the 7Li(p,n)7Be reaction
The neutron capture cross section of the s-process branch point 63Ni
Measurements of the 238U radiative capture cross section using C6D6
neutron capture: from Fe to the actinides
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Resonance Reactions HW 34 In the 19F(p,) reaction:
Problematic Yttrium reaction 25/02/2019
Astrophysical implications of the (n,
Investigation of 178Hf – K-Isomers
Pohang Neutron Facility (First Presentation of Prof. Cho’s Class)
Presentation transcript:

A new approach to the 176 Lu puzzle  clock or thermometer? an astrophysical quest and a nuclear challenge  20 years of nuclear physics level schemes, cross sections, IR  finally the Torino solution

the s-process branching at 176 Lu Yb Lu Hf p process s process r process t 1/2 = 36 Gyr !!

Audouze, Fowler, & Schramm identify 176 Lu as a cosmic clock (1972) ?

the clock is challenged by Richard Ward (1980)

life is never easy lots of nuclear input: (1)  of 176 Lu under stellar temperatures (2) (n,  ) cross sections for s-process flow (3) isomeric ratio Yb Lu Hf p process s process r process h 36 Gyr induced transitions by thermal photons?

(1) 176 Lu decay are isomer and ground state connected at high T ? i gs m Yb 176 Lu Hf h 36 Gyr

GAMS spectrometry at ILL Grenoble first mediating level at 838 keV ! f n,eff f n (n n, T) Yb 176 Lu Hf h 36 Gyr

low mass AGB stars – the main s component in 1999

(2) stellar (n,  ) cross sections 40 BaF 2 crystals 12 pentagons & 28 hexagons 15 cm crystal thickness sample Pb neutron target p-beam n-beam (n,  ): TOF with total absorption FZK

accurate (n,  ) cross sections at FZK  measured  (E n ) by time of flight, 3 < E n < 225 keV for all Yb, Lu, and Hf isotopes to ±1%, determined Maxwell-average for stellar spectrum

3.7 h (3) partial cross section to isomer isomeric ratio = (  to isomer) /  tot  activation in quasi-stellar spectrum 7 Li(p,n) 7 Be kT=25 keV 18 O(p,n) 18 F kT=5 keV 

gamma spectroscopy with HPGe detector isomeric ratio spectrum after irradiation 176 Lu m 176 Lu g

improved nuclear physics input and refined low mass AGB star model level scheme of 176 Lu + MACS to ± 1% for 174 Yb, 176 Yb 175 Lu, 176 Lu 176 Hf, 177 Hf, 178 Hf… + IR( 176 kT= 5 keV kT=25 keV branching factor f n (n n, T) f n chosen for 6 different neutron density situations throughout each thermal pulse covering a range 0.20 < f n < cm cm cm -3

s production of 176 Lu and 176 Hf during and between thermal pulses Yb 176 Lu Hf h Gyr 176 Lu 176 Hf 176 Lu 176 Hf

the main s component (in %) Lu Hf 113 ATOMIC MASS OVERABUNDANCES NORMALIZED TO 151 Sm after 5Gyr 96 97

summary the abundance ratio 176 Lu/ 176 Hf is determined by interplay of several nuclear physics features with the stellar environment decay rate, cross sections, isomers T(t) and n n (t) this interplay is so complex that the chance to obtain the correct answer simply by “ben trovare“ is negligible in a wider context this holds also for similar independent s-process branchings; hence these cases provide the most crucial test for stellar models of the AGB phase

Karlsruhe: C. Arlandini, H. Beer, S. Dababneh, M. Heil, N. Klay, R. Plag, R. Reifarth, G. Schatz, F. Voss, N. Winckler, K. Wisshak Grenoble: H. Börner, C. Doll, F. Hoyler, B. Krusche, S. Robinson, K. Schreckenbach Munich: U. Mayerhofer, G. Hlawatsch, H. Lindner, T. von Egidy Basel: T. Rauscher Sofia: W. Andrejtscheff, P. Petkov Obninsk: L. Kazakov Prague: F. Becvar, M. Krticka Chicago: A. Davis Beijing: W. Zhao Teramo: O. Straniero Torino: S. Bisterzo, M. Busso, R. Gallino