Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson,

Slides:



Advertisements
Similar presentations
Solar System Science Flares and Solar Energetic Particles Terrestrial Gamma-Ray Flashes Cosmic-ray interactions with Earth, Sun, Moon, etc. Plans: Optimization.
Advertisements

Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
THE IMPULSIVE X-RAY RESPONSE IN FLARE FOOTPOINTS TOMASZ MROZEK WROCLAW UNIWERSITY ASTRONOMICAL INSTITUTE POLAND.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
The Physics of Solar Flares Examining Solar Flares and Radio Bursts By Caylin Mendelowitz and Claire Rosen.
R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley The Solar System: A Laboratory for the Study of the Physics of Particle.
Solar flares and accelerated particles
Spatial and temporal relationships between UV continuum and hard x-ray emissions in solar flares Aaron J. Coyner and David Alexander Rice University June.
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Hard X-Ray Footpoint Motion in Spectrally Distinct Solar Flares Casey Donoven Mentor Angela Des Jardins 2011 Solar REU.
Super-Hot Thermal Plasmas in Solar Flares
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
Electron Acceleration at the Solar Flare Reconnection Outflow Shocks Gottfried Mann, Henry Aurass, and Alexander Warmuth Astrophysikalisches Institut Potsdam,
RHESSI 2003 October 28 Time Histories Falling fluxes following the peak Nuclear/511 keV line flux delayed relative to bremsstrahlung Fit to 511 keV line.
Hard X-rays associated with CMEs H.S. Hudson, UCB & SPRC Y10, Jan. 24, 2001.
Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
+ Hard X-Ray Footpoint Motion and Progressive Hardening in Solar Flares Margot Robinson Mentor: Dr. Angela DesJardins MSU Solar Physics Summer REU, 2010.
EVE non-detection of Doppler-shifted He II 304 Å H.S. Hudson 1,2, L. Fletcher 2, A. MacKinnon 2, and T. Woods 3 1 SSL, UC Berkeley, 2 University of Glasgow,
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
Working Group 2 - Ion acceleration and interactions.
9th RHESSI Workshop, Sept. 1-5, 2009, Genova On Broken-up Spectra of RHESSI Flares Y. P. Li & W. Q. Gan Purple Mountain Observatory.
Intense Flares Without Solar Energetic Particle Events N. V. Nitta (LMSAL), E. W. Cliver (AFRL), H. S. Hudson (UCB) Abstract: We study favorably located.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), J. Wolfson (LMSAL) & T. Metcalf (CORA)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Solar evidence for magnetic reconnection H. S. Hudson Space Sciences Lab, UC Berkeley.
Hard X-ray sources in the solar corona H.S. Hudson Space Sciences Lab, UC Berkeley.
Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions ITP Santa Barbara, Jan. 18, 2002Hugh.
Simbol-X Workshop, Bologna, May 2007 Non-thermal hard X-ray emission from stellar coronae A. Maggio INAF Osservatorio Astronomico di Palermo G.S. Vaiana.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
White-Light Flares and HESSI Prospects H. S. Hudson (UCB and SPRC) March 8, 2002.
The Yohkoh observations of solar flares Hugh Hudson UCB.
Hard X-ray Diagnostics of Solar Eruptions H. Hudson SSL, UC Berkeley and U. Of Glasgow.
Diagnostics and constraints for relativistic electron and ion acceleration in solar flares N. Vilmer LESIA –Observatoire de Paris Ascona_June
Soft-hard-soft spectral behavior observed by RHESSI and HXRS Hugh Hudson Frantisek F a rnik ESPM-10 meeting Prague, Sept. 11, 2002.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), T. Metcalf, J. Wolfson (LMSAL), L. Fletcher & J.I. Khan (Glasgow)
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
The Relation between Soft X-ray Ejections and Hard X-ray Emission on November 24 Flare H. Takasaki, T. Morimoto, A. Asai, J. Kiyohara, and K. Shibata Kwasan.
Footpoint behavior Hugh Hudson UCB Galileo science meeting Nobeyama, July 12, 2002.
IHY Workshop A PERSONAL VIEW OF SOLAR DRIVERS for Solar Wind Coronal Mass Ejections Solar Energetic Particles Solar Flares.
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Outstanding Issues Gordon Holman & The SPD Summer School Faculty and Students.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Today’s Papers 1. Flare-Related Magnetic Anomaly with a Sign Reversal Jiong Qiu and Dale E. Gary, 2003, ApJ, 599, Impulsive and Gradual Nonthermal.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
Physics of Solar Flares
A SOLAR FLARE is defined as a
Alexei Struminsky1,2  1 Space Research Institute
SMALL SEP EVENTS WITH METRIC TYPE II RADIO BURSTS
The CME-Flare Relationship in Homologous Eruptive Events
The spectral evolution of impulsive solar X-ray flares
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Transition Region and Coronal Explorer (TRACE)
Hard X-ray Spectral Evolution and SEP Events
Presentation transcript:

Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson, SPRC/UCB

Hard X-ray basics Hard X-rays come from bremsstrahlung Bremsstrahlung is inefficient, and electrons >20 keV dominate flare energetics Flare hard X-rays normally follow the Neupert effect Footpoints (often double) are prominent

Basics II Spectra look like power laws (may be broken) Impulsive-phase hard X-rays follow the Soft-hard-soft pattern Protons > 10 MeV now appear to resemble electrons > 20 keV energetically Also see “superhot” hard X-rays

Hot “Superhot” Broken power law Gamma rays “Broken up” Pi decay ? 1 keV 1 MeV1 GeV E f(E)

Another Neupert plot

A non-Neupert event

Conclusion Energy release in the impulsive phase coincides temporally with a distorted electron distribution function.

Neupert Effect - II Correlation plot for hard X-ray and soft X- ray peak fluxes, done for "slow LDEs"

A typical slow LDE, the “candle flame” flare (21-Feb-92)

Feb. 21 has a long “impulsive” phase - the Neupert effect

Conclusion The “impulsive phase” non-thermal effects occur in flares of all sizes and time scales.

Conclusion Soft-hard-soft spectral evolution is something fundamental that is modelable, but which has not yet been modeled.

September 24, 2001 HXT observed a rapidly-variable source with a soft spectrum at the onset phase

Conclusion There are strong suggestions that the basic physics of pre-flare excitation is not “heating,” but rather particle acceleration

April 18, 2001

Summary of uses I Footpoint connectivity Impulsive-phase energetics Coronal trapping Filament activation “Firm” X-rays

Summary of uses II Type I Type II Type III Type IV

Hot “Superhot” Broken power law Gamma rays “Broken up” Pi decay ? 1 keV 1 MeV1 GeV E f(E)

Reflecting hard X-ray telescope Zero background Infinite dynamic range Photometry limited by counting statistics Good spectral domain (to tens of keV) All technologies seem to be available