Defense: Christopher Francis, Rumou duan Data Center TCP (DCTCP) 1.

Slides:



Advertisements
Similar presentations
Finishing Flows Quickly with Preemptive Scheduling
Advertisements

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan Microsoft Research.
B 黃冠智.
Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan Modified by Feng.
Lecture 18: Congestion Control in Data Center Networks 1.
Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan Presented by Shaddi.
CSIT560 Internet Infrastructure: Switches and Routers Active Queue Management Presented By: Gary Po, Henry Hui and Kenny Chong.
Fixing TCP in Datacenters Costin Raiciu Advanced Topics in Distributed Systems 2011.
PFabric: Minimal Near-Optimal Datacenter Transport Mohammad Alizadeh Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji Prabhakar, Scott Shenker.
Congestion Control: TCP & DC-TCP Swarun Kumar With Slides From: Prof. Katabi, Alizadeh et al.
Active Queue Management: Theory, Experiment and Implementation Vishal Misra Dept. of Computer Science Columbia University in the City of New York.
Balajee Vamanan et al. Deadline-Aware Datacenter TCP (D 2 TCP) Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar.
1 Updates on Backward Congestion Notification Davide Bergamasco Cisco Systems, Inc. IEEE 802 Plenary Meeting San Francisco, USA July.
Mohammad Alizadeh Adel Javanmard and Balaji Prabhakar Stanford University Analysis of DCTCP:Analysis of DCTCP: Stability, Convergence, and FairnessStability,
Congestion Control An Overview -Jyothi Guntaka. Congestion  What is congestion ?  The aggregate demand for network resources exceeds the available capacity.
IETF87 Berlin DCTCP implementation in FreeBSD
XCP: Congestion Control for High Bandwidth-Delay Product Network Dina Katabi, Mark Handley and Charlie Rohrs Presented by Ao-Jan Su.
Receiver-driven Layered Multicast S. McCanne, V. Jacobsen and M. Vetterli SIGCOMM 1996.
Bertha & M Sadeeq.  Easy to manage the problems  Scalability  Real time and real environment  Free data collection  Cost efficient  DCTCP only covers.
Congestion control in data centers
SEDCL: Stanford Experimental Data Center Laboratory.
Data Center TCP (DCTCP)
Jennifer Rexford Fall 2014 (TTh 3:00-4:20 in CS 105) COS 561: Advanced Computer Networks TCP.
Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs.
Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Practical TDMA for Datacenter Ethernet
Mohammad Alizadeh Stanford University Joint with: Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat, Masato Yasuda HULL: High bandwidth, Ultra Low-Latency.
Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan by liyong Data.
TCP & Data Center Networking
TCP Incast in Data Center Networks
Curbing Delays in Datacenters: Need Time to Save Time? Mohammad Alizadeh Sachin Katti, Balaji Prabhakar Insieme Networks Stanford University 1.
Detail: Reducing the Flow Completion Time Tail in Datacenter Networks SIGCOMM PIGGY.
B 李奕德.  Abstract  Intro  ECN in DCTCP  TDCTCP  Performance evaluation  conclusion.
ACN: RED paper1 Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson, IEEE Transactions on Networking, Vol.1, No. 4, (Aug.
Packet Transport Mechanisms for Data Center Networks Mohammad Alizadeh NetSeminar (April 12, 2012) Mohammad Alizadeh NetSeminar (April 12, 2012) Stanford.
27th, Nov 2001 GLOBECOM /16 Analysis of Dynamic Behaviors of Many TCP Connections Sharing Tail-Drop / RED Routers Go Hasegawa Osaka University, Japan.
DCTCP & CoDel the Best is the Friend of the Good Bob Briscoe, BT Murari Sridharan, Microsoft IETF-84 TSVAREA Jul 2012 Le mieux est l'ennemi du bien Voltaire.
Queueing and Active Queue Management Aditya Akella 02/26/2007.
Wei Bai with Li Chen, Kai Chen, Dongsu Han, Chen Tian, Hao Wang SING HKUST Information-Agnostic Flow Scheduling for Commodity Data Centers 1 SJTU,
Kai Chen (HKUST) Nov 1, 2013, USTC, Hefei Data Center Networking 1.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
TCP continued. Discussion – TCP Throughput TCP will most likely generate the saw tooth type of traffic. – A rough estimate is that the congestion window.
XCP: eXplicit Control Protocol Dina Katabi MIT Lab for Computer Science
Analysis and Design of an Adaptive Virtual Queue (AVQ) Algorithm for AQM By Srisankar Kunniyur & R. Srikant Presented by Hareesh Pattipati.
1 Sheer volume and dynamic nature of video stresses network resources PIE: A lightweight latency control to address the buffer problem issue Rong Pan,
6.888: Lecture 3 Data Center Congestion Control Mohammad Alizadeh Spring
1 Three ways to (ab)use Multipath Congestion Control Costin Raiciu University Politehnica of Bucharest.
MMPTCP: A Multipath Transport Protocol for Data Centres 1 Morteza Kheirkhah University of Edinburgh, UK Ian Wakeman and George Parisis University of Sussex,
Revisiting Transport Congestion Control Jian He UT Austin 1.
Shuihai Hu, Wei Bai, Kai Chen, Chen Tian (NJU), Ying Zhang (HP Labs), Haitao Wu (Microsoft) Sing Hong Kong University of Science and Technology.
Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan Microsoft Research.
15-744: Computer Networking L-14 Data Center Networking III.
Data Center TCP (DCTCP)
Data Center TCP (DCTCP)
15-744: Computer Networking
Incast-Aware Switch-Assisted TCP Congestion Control for Data Centers
TCP Congestion Control at the Network Edge
Router-Assisted Congestion Control
Packet Transport Mechanisms for Data Center Networks
Microsoft Research Stanford University
Hamed Rezaei, Mojtaba Malekpourshahraki, Balajee Vamanan
AMP: A Better Multipath TCP for Data Center Networks
Data Center TCP (DCTCP)
SICC: SDN-Based Incast Congestion Control For Data Centers Ahmed M
Lecture 16, Computer Networks (198:552)
Reconciling Mice and Elephants in Data Center Networks
Lecture 17, Computer Networks (198:552)
CS 401/601 Computer Network Systems Mehmet Gunes
AMP: An Adaptive Multipath TCP for Data Center Networks
Data Centers.
Presentation transcript:

Defense: Christopher Francis, Rumou duan Data Center TCP (DCTCP) 1

Data Center Packet Transport Cloud computing service provider – Amazon,Microsoft,Google Transport inside the DC – TCP rules (99.9% of traffic) How’s TCP doing? 2

TCP in the Data Center We’ll see TCP does not meet demands of apps. – Incast  Suffers from bursty packet drops  Not fast enough utilize spare bandwidth – Builds up large queues:  Adds significant latency.  Wastes precious buffers, esp. bad with shallow-buffered switches. Operators work around TCP problems. ‒Ad-hoc, inefficient, often expensive solutions Our solution: Data Center TCP 3

Case Study: Microsoft Bing Measurements from 6000 server production cluster Instrumentation passively collects logs ‒Application-level ‒Socket-level ‒Selected packet-level More than 150TB of compressed data over a month 4

TLA MLA Worker Nodes ……… Partition/Aggregate Application Structure 5 Picasso “Everything you can imagine is real.”“Bad artists copy. Good artists steal.” “It is your work in life that is the ultimate seduction.“ “The chief enemy of creativity is good sense.“ “Inspiration does exist, but it must find you working.” “I'd like to live as a poor man with lots of money.“ “Art is a lie that makes us realize the truth. “Computers are useless. They can only give you answers.” ….. 1. Art is a lie… 2. The chief… 3. … Art is a lie… 3. ….. Art is… Picasso Time is money  Strict deadlines (SLAs) Missed deadline  Lower quality result Deadline = 250ms Deadline = 50ms Deadline = 10ms

Workloads Partition/Aggregate (Query) Short messages [50KB-1MB] ( C oordination, Control state) Large flows [1MB-50MB] ( D ata update) 6 Delay-sensitive Throughput-sensitive

Impairments Incast Queue Buildup Buffer Pressure 7

Incast 8 TCP timeout Worker 1 Worker 2 Worker 3 Worker 4 Aggregator RTO min = 300 ms Synchronized mice collide.  Caused by Partition/Aggregate.

Queue Buildup 9 Sender 1 Sender 2 Receiver Big flows buildup queues.  Increased latency for short flows. Measurements in Bing cluster  For 90% packets: RTT < 1ms  For 10% packets: 1ms < RTT < 15ms

Data Center Transport Requirements High Burst Tolerance –Incast due to Partition/Aggregate is common. 2. Low Latency –Short flows, queries 3. High Throughput –Large file transfers The challenge is to achieve these three together.

Balance Between Requirements 11 High Burst Tolerance High Throughput Low Latency DCTCP Deep Buffers:  Queuing Delays Increase Latency Shallow Buffers:  Bad for Bursts & Throughput Reduced RTO min (SIGCOMM ‘09)  Doesn’t Help Latency AQM – RED:  Avg Queue Not Fast Enough for Incast Objective: Low Queue Occupancy & High Throughput

The DCTCP Algorithm 12

Review: The TCP/ECN Control Loop 13 Sender 1 Sender 2 Receiver ECN Mark (1 bit) ECN = Explicit Congestion Notification

Two Key Ideas 1.React in proportion to the extent of congestion, not its presence. Reduces variance in sending rates, lowering queuing requirements. 2.Mark based on instantaneous queue length. Fast feedback to better deal with bursts. 18 ECN MarksTCPDCTCP Cut window by 50%Cut window by 40% Cut window by 50%Cut window by 5%

Data Center TCP Algorithm Switch side: – Mark packets when Queue Length > K. 19 Sender side: – Maintain running average of fraction of packets marked (α). In each RTT:  Adaptive window decreases: – Note: decrease factor between 1 and 2. B K Mark Don’t Mark

DCTCP in Action 20 Setup: Win 7, Broadcom 1Gbps Switch Scenario: 2 long-lived flows, K = 30KB (Kbytes)

Evaluation Implemented in Windows stack. Real hardware, 1Gbps and 10Gbps experiments – 90 server testbed – Broadcom Triumph 48 1G ports – 4MB shared memory – Cisco Cat G ports – 16MB shared memory – Broadcom Scorpion 24 10G ports – 4MB shared memory Numerous benchmarks – Throughput and Queue Length – Multi-hop – Queue Buildup – Buffer Pressure 23 – Fairness and Convergence – Incast – Static vs Dynamic Buffer Mgmt

Experiment implement 45 1G servers connected to a Triumph, a 10G server extern connection – 1Gbps links K=20 – 10Gbps link K=65 Generate query, and background traffic – 10 minutes, 200,000 background, 188,000 queries Metric: – Flow completion time for queries and background flows. 24 We use RTO min = 10ms for both TCP & DCTCP.

Baseline 25 Background FlowsQuery Flows

Baseline 25 Background FlowsQuery Flows Low latency for short flows.

Baseline 25 Background FlowsQuery Flows Low latency for short flows. High throughput for long flows.

Baseline 25 Background FlowsQuery Flows Low latency for short flows. High throughput for long flows. High burst tolerance for query flows.

Scaled Background & Query 10x Background, 10x Query 26

Conclusions DCTCP satisfies all our requirements for Data Center packet transport. Handles bursts well Keeps queuing delays low Achieves high throughput Features: Very simple change to TCP and a single switch parameter K. Based on ECN mechanisms already available in commodity switch. 27

25