Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy  Nanowire growth and properties.

Slides:



Advertisements
Similar presentations
Abteilung Festkörperphysik Solid State Physics University of Ulm Abteilung Festkörperphysik Solid State Physics University of Ulm Note that 1µm =
Advertisements

Nanowires growth and devices applications
Single Electron Devices Vishwanath Joshi Advanced Semiconductor Devices EE 698 A.
Niels Bohr Institute – University of Copenhagen
Anodic Aluminum Oxide.
Electrical transport and charge detection in nanoscale phosphorus-in-silicon islands Fay Hudson, Andrew Ferguson, Victor Chan, Changyi Yang, David Jamieson,
Graphene & Nanowires: Applications Kevin Babb & Petar Petrov Physics 141A Presentation March 5, 2013.
Roadmap of Microelectronic Industry. Scaling of MOSFET Reduction of channel length L  L/α Integration density  α 2 Speed  α; Power/device  1/α 2 Power.
One-dimensional hole gas in germanium silicon nanowire hetero-structures Linyou Cao Department of Materials Science and Engineering Drexel University 12/09/2005.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
Nanodevices and nanostructures: quantum wires and quantum dots ECE 423 Final Project Wan-Ching Hung Dec 12,2006.
Interconnect Focus Center e¯e¯ e¯e¯ e¯e¯ e¯e¯ SEMICONDUCTOR SUPPLIERS Goal: Fabricate and perform electrical tests on various interconnected networks of.
Introduction to the Kondo Effect in Mesoscopic Systems.
Kondo Effects in Carbon Nanotubes
Origin of Coulomb Blockade Oscillations in Single-Electron Transistors
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Si and Ge NW FETs, NiSi-Si-NiSI conductor hetero-structures and manufacturing steps Csaba Andras Moritz Associate Professor University of Massachusetts,
Semiconductor Nanostructure Acoustodynamics Jens Ebbecke Linz 25/06/09.
Nanoscale memory cell based on a nanoelectromechanical switched capacitor EECS Min Hee Cho.
Scanning Probe Lithography
ECE685 Nanoelectronics – Semiconductor Devices Lecture given by Qiliang Li.
Z. Feng VLSI Design 1.1 VLSI Design MOSFET Zhuo Feng.
Synthesis and Applications of Semiconductor Nanowires Group 17 余承曄 F Graduate Institute of Electronics Engineering, NTU Nanoelectronics.
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Spin Dependent Transport Properties of Magnetic Nanostructures Amédée d’Aboville, with Dr. J. Philip, Dr. S. Kang, with Dr. J. Philip, Dr. S. Kang, J.
Tamer Ragheb ELEC 527 Presentation Rice University 3/15/2007
Growth and impurity doping of compound semiconductor nanowires Solid State Physics, Lund University, Lund E. Norberg, P. Wickert, H. Nilsson, J. Trägårdh,
Effects of supersaturation on the crystal structure of gold seeded III–V nanowires 1 Jonas Johansson, 2 Lisa S. Karlsson, 1 Kimberly A. Dick, 1 Jessica.
J.R.Krenn – Nanotechnology – CERN 2003 – Part 2 page 1 NANOTECHNOLOGY Part 2. Electronics The Semiconductor Roadmap Energy Quantization and Quantum Dots.
Crystal Growth of III/V Semiconductor Nanowires Kobi Greenberg.
S. E. Thompson EEL 6935 Today’s Subject Continue on some basics on single-wall CNT---- chiral length, angle and band gap; Other properties of CNT; Device.
Techniques for Synthesis of Nano-materials
Importance of Materials Processing  All electronic devices & systems are made of materials in various combinations  Raw materials are far from the final.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
UNIVERSITY OF NOTRE DAME Origin of Coulomb Blockade Oscillations in Single-Electron Transistors Fabricated with Granulated Cr/Cr 2 O 3 Resistive Microstrips.
Basic Science of Nanomaterials (Ch. 11)
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Si/SiGe(C) Heterostructures S. H. Huang Dept. of E. E., NTU.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Electrical control over single hole spins in nanowire quantum dots
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Single Electron Transistor (SET)
Measuring Quantum Coherence in the Cooper-Pair Box
Mesoscopic physics and nanotechnology
Singlet-Triplet and Doublet-Doublet Kondo Effect
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
1 Semiconductor Devices  Metal-semiconductor junction  Rectifier (Schottky contact or Schottky barrier)  Ohmic contact  p – n rectifier  Zener diode.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Form Quantum Wires and Quantum Dots on Surfaces
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
Single Electron Transistor (SET) CgCg dot VgVg e-e- e-e- gate source drain channel A single electron transistor is similar to a normal transistor (below),
Molecular and Electronic Devices Based on Novel One-Dimensional Nanopore Arrays NSF NIRT Grant# PIs: Zhi Chen 1, Bruce J. Hinds 1, Vijay Singh.
National laboratory for advanced Tecnologies and nAnoSCience Nanowires growth and devices applications Trieste, Growth mechanism and methods Devices.
Nanoscale Schottky Barrier Measured Using STM Peter Bennett, Arizona State University, DMR The current-voltage (I-V) behavior of nanoscale metallic.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Developing a Versatile Platform for Nanoscale Materials Characterization Julia Bobak, Daniel Collins, Fatemeh Soltani, David W. Steuerman Department of.
Why MOCVD and GaAs nanowires?
Spin Electronics Peng Xiong Department of Physics and MARTECH
Lecture L ECE 4243/6243 Fall 2016 UConn F
Interaction between Photons and Electrons
A p-n junction is not a device
Niels Bohr Institute, Nano-Science Center, University of Copenhagen
Fabrication of GaAs nanowires for solar cell devices
Synthesis and Applications of Semiconductor Nanowires
Presentation transcript:

Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy  Nanowire growth and properties  Integration with Si technology  Manipulation and NEMS  Single electron transport  Gate-controlled proximity supercurrent Outline

gold particle liquid Au-InP eutect vapor nanowire time Catalytic (VLS) crystal growth Semiconductor nanowires Key features: nanoscale diameter (few to 100 nm) High aspect ratio (1-100 micron long) Versatility in composition

heterojunctions p-n junctions hollow Possible nanowire structures coaxial

10 nm InP wire on SiO 2 [111] Zinc Blende [111] direction Before growth

Bakkers et al., JACS 2003, 125, 3440 Hollow core wall 5 nm wall Zinc Blende crystal structure 200 nm InP Tubes

50 nm Coaxial wires Group III modulation Position (nm) Counts Ga P In InP GaP

Heterojunctions Group V modulation GaAs GaP GaAs Au 100 nm GaP: 1.8 nm/sec GaAs: 5.0 nm/sec

Björk et al., NanoLetters 2, 87 (2002) InAs InP InAs Almost atomically sharp interfaces No strain-induced dislocations (stress can relax at the surface) (001) Heterostructures nanowires (Samuelson’s group – Lund) (Chemical beam epitaxy, MOVPE)

Epitaxial InP wires on Ge 5  m InP Ge I The InP/Ge heterointerface provides a low-resistance Ohmic contact between wire and substrate HR TEM Conducting AFM More recently: epitaxial InP on Si!  Integration of III-V devices with Si technology [See also Mårtensson et al., Nano Letters 4, 1987 (2004)] V sd (mV) I (mV)

Silicon Gate Source Drain III-V Vertical transistor Silicon Source Drain p n Nano LED III-V devices on silicon NANOWIRE LED: Gudiksen et al., Nature (2002) NANOWIRE LASERS: Johnson et al., Nature Materials (2002) Duan et al., Nature (2003) Enhanced speed Enhanced transconductance Small footprint

More on Nanowire devices… Law et al., Science 305, 1269 (2004). Nanowire optical waveguides Dick et al., Nature Materials 3, 380 (2004). Nanowire trees Cui et al., Science 293, 1289 (2001). Nanowire biosensors

AFM manipulation

Electrically-driven nanowire cantilever Nanowire “string”

After wet etching… following subsequent AFM manipulation….

V s-d V gate SiO 2 Si p+ Device fabrication: -wires deposited on p-type Si wafer with a 250-nm-thick surface oxide -Ti/Al contacts defined by e- beam lithography Low-temperature transport in semiconductor NWs InP & InAs n-type nanowires Diameter: 25 – 140 nm Length: 2 – 20  m

Single-electron tunneling in InP nanowires V SD [mV] V gate [mV] L~600 nm T~350 mK E c ~1 meV Differential conductance (black: low, white: high); Many diamonds visible. Not so regular, but very stable and reproducible. Single & Multiple(probably two)-island behavior Typical island size: ~100 nm

B = 31 mT B = 0.5 T V (  V) V g (mV) gBBgBB g = 1.5 ± 0.2 InP-nanowire quantum dot: Zeeman spin splitting EE N N+1

Tunable Quantum Dots top gates source drain Side gates Few-electron quantum dots in InAs/InP nanowires Björk et al., Nano Lett. 4, 1621 (2004) InAs QD InP barriers

S S N (1-D or 0-D) Kasumov et al, Science 284 (’99) Morpurgo et al., Science 286 (’99) Buitelaar et al., PRL 89 (’02); PRL 91 (‘03) Jarillo-Herrero et al. (unpublished) Superconductor Nanowire Superconductor For T < 1.2 K Only a few experiments done on similar hybrid systems based on carbon nanotubes: Superconducting contacts => Proximity effect Low contact resistance => no Coulomb blockade

InAs nanowire devices Ti(10 nm)/Al(120 nm) L sd = 60 – 500 nm V gate SiO 2 Si (p+) 4-point contacts: InAs [100]  L sd W source drain Device resistances: 0.4 – 4 K 

Supercurrent in InAs nanowires T = 40 mK I C = 136 nA R N = 417  I C R N = 60  V ~  0 /e Hysteretic behavior due to strong capacitive coupling between source and drain (90 % device yield!) Enhanced conductance for 2  0 <V<2  0  High contact transparency (T~75%)  B=0 20/e20/e

Multiple Andreev reflection From 3 different devices: Peaks at V n =2  0 /ne: V 1 =2  0 /e V 2 = 2  0 /2e V 3 = 2  0 /3e Normal Super    N S  T < Tc Andreev reflection in a S-N junction

Field-effect control of the supercurrent Supercurrent fluctuations correlate with normal-state universal conductance fluctations 0 30 k  Electron transport through the nanowire is diffusive and phase coherent => mesoscopic Josephson junctions First Josephson Field Effect Transistors: Takayanagi et al., PRL (1985). Kleinsasser et al., Appl. Phys. Lett. (1989). Nguyen et al., Appl. Phys. Lett. (1990).

 V=10  V  V= (  /2e)  rf =  V for 1 GHz “Quantized voltage steps depending on RF frequency” AC Josephson effect: Rf irradiation => Shapiro steps

Shapiro steps: rf-power dependence  rf = 2 GHz  rf = 4 GHz  rf = 5 GHz  I N ~ N-th order Bessel function with I C,fit = 34 nA > I C,exp = 26 nA ICIC  I N=1  I N=2  I N=3  I N=4 (a) (b)(c)

Gate-controlled SQUID

Jorden van Dam Floris Zwanenburg L. Gurevich Yong-Joo Doh Leo Kouwenhoven Erik Bakkers Aarnoud Roest Lou-Fe Feiner Philips Eindhoven: Epitaxial III-V nanowires on Ge [Nature Materials 3, 769 (2004)] Nanowire SET [Appl. Phys. Lett. 83, 344 (2003)] Nanowire JOFET [Science 309, 272 (2005)] Nanowire SQUID [unpublished] References Collaborators