G.Villani march 071 CALICE pixel Deep P-Well results Nwells P-well 3μm guard ring Diodes [3.6,1.8,0.9] x[3.6,1.8,0.9]μm 2 Bias: NWell 1.8/1V Diodes: 1.5V.

Slides:



Advertisements
Similar presentations
Wojciech Dulinski Réunion Capteurs CMOS, Wojtek Dulinski, Samir Amar-Youcef, Michael Deveaux, Mathieu Goffe.
Advertisements

Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Studies and status of CMOS-based sensors research and development for ATLAS strip detector upgrade 1 Vitaliy Fadeyev, Zach Galloway, Herve Grabas, Alexander.
1 CALICE simulation results G.Villani 06 Cell size: 50 x 50  m 2 21 hits simulated, 5  m pitch 121 extrapolated hits / pixel 961 extrapolated hits /
Anne-Marie Magnan Imperial College London A MAPS-based digital Electromagnetic Calorimeter for the ILC on behalf of the MAPS group: Y. Mikami, N.K. Watson,
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell 16 μm x 16 μm P-well 17 μm x 17 μm Collecting diodes 3.6 μm x 3.6 μm Bias: NWell 3.5V Diodes:
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
November 30th, 2006MAPS meeting - Anne-Marie Magnan - Imperial College London 1 MAPS simulation Application of charge diffusion on Geant4 simulation and.
Tera-Pixel APS for CALICE Progress 20 th October 2006 [JC+RT]
1 The MAPS ECAL ECFA-2008; Warsaw, 11 th June 2008 John Wilson (University of Birmingham) On behalf of the CALICE MAPS group: J.P.Crooks, M.M.Stanitzki,
Tera-Pixel APS for CALICE Progress meeting, 12 th July 2006 Jamie Crooks, Microelectronics/RAL.
Bias Ring Current Carl Goodrich 2/26/08. Carl Goodrich- VELO Meeting2 Sensor: Measurement: IV Data from December V bias Ground.
Tera-Pixel APS for CALICE Progress 13 th November 2006.
1 CALICE D4 simulation results G.Villani feb. 06 Cell size: 25 x 25  m 2 Epitaxial thickness: 20  m Diode location: S4 Diode size: 1.5 x 1.5  m 2 Cell.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
TeraPixel APS for CALICE Progress meeting 9th Dec 2005 Jamie Crooks, Microelectronics/RAL.
1 CALICE simulation results G.Villani oct. 06 Progress on CALICE MAPS detector simulations: Results for 1.8 x 1.8 µm 2 Discussions & conclusions Next step.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
Chronopixel R&D status – May 2014 N. B. Sinev University of Oregon, Eugene In collaboration with J.E.Brau, D.M.Strom (University of Oregon, Eugene, OR),
Development of HV CMOS sensors for 3D integration
Ivan Peric, Monolithic Detectors for Strip Region 1 CMOS periphery.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
Ivan Peric, WIT Active Pixel Sensors in high-voltage CMOS technologies for ATLAS Ivan Perić University of Heidelberg, Germany.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Semiconductor detectors
Chronopixel status N. B. Sinev University of Oregon, Eugene In collaboration with J.E.Brau, D.M.Strom (University of Oregon, Eugene, OR), C.Baltay, W.Emmet,
Chronopixel project status N. B. Sinev University of Oregon, Eugene In collaboration with J.E.Brau, D.M.Strom (University of Oregon, Eugene, OR), C.Baltay,
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
1 Nick Sinev LCWS08, University of Illinois at Chicago November 18, 2008 Status of the Chronopixel project J. E. Brau, N. B. Sinev, D. M. Strom University.
Test ISIS1 P-well device on board V1.4 RAL Z. Zhang & K. Stefanov.
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
Chronopixel status N. B. Sinev University of Oregon, Eugene In collaboration with J.E.Brau, D.M.Strom (University of Oregon, Eugene, OR), C.Baltay, W.Emmet,
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
10th Trento Workshop on Radiation Detectors HVCMOS Sensors for LHC Upgrade Felix Michael Ehrler, Robert Eber Daniel Münstermann, Branislav Ristic, Mathieu.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague September TWEPP-07 Topical Workshop on Electronics for.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 3 Paul Dauncey, Imperial College London.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
Test structures for the evaluation of TowerJazz 180 nm CMOS Imaging Sensor technology  ALICE ITS microelectronics team - CERN.
Tera-Pixel APS for CALICE Progress meeting, 6 th June 2006 Jamie Crooks, Microelectronics/RAL.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
MS 18 Feb 2008 CMOS group meeting1 Failure analysis of the MimoSTAR3 prototype investigation performed at LBL.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
G.Villani Aug. 071 CALICE pixel Laser testing update Laser MIP equivalent calibration update Si detector coupled to low noise CA + differentiator (no shaper)
Konstantin Stefanov 05/10/ Detecting elements for the CALICE MAPS design How does the collected charge depend on 1.Diode size? 2.Diode position with.
Infrared Laser Test System Silicon Diode Testing 29 May 2007 Fadmar Osmić Contents: Setup modifications new amplifier (Agilent MSA-0886) new pulse generator.
SPiDeR  Status of SPIDER Status/Funding Sensor overview with first results –TPAC –FORTIS –CHERWELL Beam test 09 Future.
Contact Us.
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
Charge collection studies with irradiated CMOS detectors
Ivan Peric for ATLAS and CLIC HVCMOS R&D and Mu3e Collaborations
How To Add A Xerox Printer To Google Chrome
Frio River Cabins - Frio Vacation Homes - Frio Country Resort
Detecting elements for the CALICE MAPS design
Изразеното в настоящата презентация мнение обвързва единствено автора и не представлява официално становище на Комисията за финансов надзор Данил Джоргов.
PIXEL Slow Simulation Status Report
CALICE simulation results G.Villani 06
Presentation transcript:

G.Villani march 071 CALICE pixel Deep P-Well results Nwells P-well 3μm guard ring Diodes [3.6,1.8,0.9] x[3.6,1.8,0.9]μm 2 Bias: NWell 1.8/1V Diodes: 1.5V 50 μm x 50 μm pixel size P-well contact ground Hit points : from BR corner (1) to BR diode (10) 10 1

G.Villani march 072 CALICE pixel Deep P-Well results Charge collected 3.6µm Charge collected 1.8µm Charge collected 0.9µm Collection time 3.6µm Collection time 1.8µm Collection time 0.9µm ns S/N 3.6µm S/N 1.8µm S/N 0.9µm *N.B. S/N 0.9µm assuming N = 20 e - e-e- *N.B. S/N 1.8µm assuming N = 26 e - *N.B. S/N 3.6µm assuming N = 42 e -

G.Villani march 073 Conclusions The 0.9 um expectedly gives less charge collection: the S/N is probably lower than in the 1.8μm case (to be verified) Collection time exceeds 200ns for the 0.9μm No guard ring implemented CALICE pixel Deep P-Well results