GRAVITATIONAL WAVES FROM NS INTERIORS C. Peralta, M. Bennett, M. Giacobello, A. Melatos, A. Ooi, A. van Eysden, S. Wyithe (U. Melbourne and AEI) 1.Superfluid.

Slides:



Advertisements
Similar presentations
Vortex instability and the onset of superfluid turbulence
Advertisements

Section 2: The Planetary Boundary Layer
Focus: Detecting vortices/turbulence in pure superfluid 4 He at T
An introduction to superfluidity and quantum turbulence
Dynamics and Statistics of Quantum Turbulence at Low Temperatures
2010 Glitch in Vela Pulsar Sarah Buchner SKA Bursary conference Dec 2010.
Glitches and precession. What is a glitch? Starquakes or/and vortex lines unpinning - new configuration or transfer of angular momentum A sudden increase.
Gravitational waves from pulsar glitches Lila Warszawski, Natalia Berloff & Andrew Melatos Caltech, June 2009.
Upper limits on the effect of pasta on potential neutron star observables William Newton Michael Gearheart, Josh Hooker, Bao-An Li.
Gravitational waves and neutron star matter (except oscillations) Ben Owen August 6, ECT* Trento arXiv:
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Dynamics V: response of the ocean to wind (Langmuir circulation, mixed layer, Ekman layer) L. Talley Fall, 2014 Surface mixed layer - Langmuir circulation.
Neutron Star Magnetic Mountains: An Improved Model Maxim Priymak Supervisor: Dr. A. Melatos Orange 2009: Pulsar Meeting.
Wind Forced Ocean Circulation. Ekman Spiral and Ekman Mass Transport.
Pulsars in Low-Mass X-Ray Binaries Deepto Chakrabarty Massachusetts Institute of Technology.
Debades Bandyopadhyay Saha Institute of Nuclear Physics Kolkata, India With Debarati Chatterjee (SINP) Bulk viscosity and r-modes of neutron stars.
Western Intensification Subtropical gyres are asymmetric & have intense WBC’s Western intensification is created by the conservation of angular momentum.
Testing GR with Ground-Based GW Detectors B.S. Sathyaprakash, Cardiff University, UK (based on a Living Reviews article with Schutz) at University of Birmingham,
Steady State General Ocean Circulation “steady state” means: constant in time, no accelerations or Sum of all forces = 0 Outline:1. Ekman dynamics (Coriolis~Friction)
Double feature: Yuri Levin, Leiden 1. The theory of fast oscillations during magnetar giant flares 2. Measuring gravitational waves using Pulsar Timing.
November 2, 2006LIGO / pulsar workshop1 How LIGO searches are affected by theory & astronomical observations Ben Owen.
D A C B z = 20m z=4m Homework Problem A cylindrical vessel of height H = 20 m is filled with water of density to a height of 4m. What is the pressure at:
1 Shu-Hua Yang ( 杨书华 ) Hua Zhong Normal University The role of r-mode damping in the thermal evoltion of neutron stars.
The Equations of Motion
Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde Coastal Ocean Dynamics First course: Hydrodynamics.
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
The Astrophysics of Gravitational Wave Sources Conference Summary: Ground-Based Detectors ( Hz) Kimberly New, LANL.
Gravitational waves from neutron star instabilities: What do we actually know? Nils Andersson Department of Mathematics University of Southampton IAP Paris.
GRAVITATIONAL WAVES FROM ACCRETING NS A. Melatos, D. Payne, C. Peralta, M. Vigelius (U. Melbourne) 1.X-ray timing → LMXB spins → GW “stalling” → promising.
Dynamics of Polarized Quantum Turbulence in Rotating Superfluid 4 He Paul Walmsley and Andrei Golov.
Ferromagnetism in nuclear matter (and how it relates to neutron stars) Jacobus Diener (PhD student) Supervisors: Prof FG Scholtz and Prof HB Geyer Department.
Makoto Tsubota,Tsunehiko Araki and Akira Mitani (Osaka), Sarah Hulton (Stirling), David Samuels (Virginia Tech) INSTABILITY OF VORTEX ARRAY AND POLARIZATION.
Numerical simulations of thermal counterflow in the presence of solid boundaries Andrew Baggaley Jason Laurie Weizmann Institute Sylvain Laizet Imperial.
LES of Turbulent Flows: Lecture 2 (ME EN )
Wind Driven Circulation III Closed Gyre Circulation Quasi-Geostrophic Vorticity Equation Westward intensification Stommel Model Munk Model Inertia boundary.
1 Equations of Motion Buoyancy Ekman and Inertial Motion September 17.
What can gravitational waves tell us about neutron stars? Ben Owen TeV UW MadisonAugust 30, 2006.
Direct simulation of planetary and stellar dynamos II. Future challenges (maintenance of differential rotation) Gary A Glatzmaier University of California,
Anthony Piro (UCSB) Advisor: Lars Bildsten Burst Oscillations and Nonradial Modes of Neutron Stars Piro & Bildsten 2004, 2005a, 2005b, 2005c (submitted)
LIGO- G Z August 19, 2004LIGO Scientific Collaboration 1 The r-modes look good again in accreting neutron stars Ben Owen with Mohit Nayyar.
R-Modes of Neutron Stars with a Superfluid Core LEE, U Astronomical Institute Tohoku University.
Do Old Neutron Stars Shiver to Keep Warm? Jeremy S. Heyl Harvard-Smithsonian CfA.
Spin up/down processes of X-ray pulsars arXiv: v1; v2; v1; reporter: Shaoyong
Glitches and precession. What is a glitch? Starquakes or/and vortex lines unpinning - new configuration or transfer of angular momentum A sudden increase.
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS TIME-DEPENDENT DYNAMICS; WAVE DISTURBANCES LECTURE 21.
The Search For Gravitation Radiation From Periodic Sources Gregory Mendell LIGO Hanford Observatory : The Laser Interferometer Gravitational-wave Observatory.
Neutron Star Normal Modes Neutron Star Normal Modes LSC Meeting, Baton Rouge, March 2004 LIGO-G Z B.S. Sathyaprakash and Bernard Schutz Cardiff.
Scales of Motion, Reynolds averaging September 22.
P. Meunier Institut de Recherche sur les Phénomènes Hors-Equilibre, Marseille, France Collaborators: X. Riedinger, N. Boulanger, S. Le Dizès, P. Billant.
Isola d’Elba 28/05/2006 Non linear effects in pulsations of compact stars Andrea Passamonti Andrea Passamonti Aristotle University of Thessaloniki VESF.
Ekman Spiral Boundary layer flow under horizontal homogeneous condition Assuming steady state and neglecting thermodynamic effect, Using K-theory Further.
Forces and accelerations in a fluid: (a) acceleration, (b) advection, (c) pressure gradient force, (d) gravity, and (e) acceleration associated with viscosity.
+ Quintessence and Gravitational Waves Peng Zhou, Daniel Chung UW-Madison Physics Dept.
Ian Bradley Tony Guénault Richard Haley Carolyn Matthews Ian Miller George Pickett Victor Tsepelin Martin Ward Rebecca Whitehead Kathryn Zaki Ian Bradley.
What’s New With The R-modes? Gregory Mendell LIGO Hanford Observatory.
Magneto-shear Oscillations of Magnetars Yasufumi Kojima Hiroshima Univ. 小嶌康史 ( 広島大学 ) 年 1 月 日 新学術領域(重力波天体)研究会 東京工業大学 公募研究( A05)
Chapter 1: Basic Concepts
T HE VORTICAL MECHANISM OF GENERATION & COLLIMATION OF THE ASTROPHYSICAL JETS M.G. A BRAHAMYAN Yerevan State University, Armenia.
Glitches and precession
Glitches, Neutron Star Structure and External Torques: New Developments, New Perspectives NewCompStar Budapest, M. Ali Alpar ongoing work.
Superfluid turbulence and neutron star dynamics
Sco-X1search : S2 results
Damped Inertial oscillations
Glitches and precession
Probing Neutron Star interiors with ET ?
Lila Warszawski & Andrew Melatos
Continuous gravitational waves: Observations vs. theory
M. E. Gusakov, A. I. Chugunov, E. M. Kantor
Vortex Induced Vibration in Centrifugal pump ( case study)
GRAVITATIONAL WAVES FROM ACCRETING NS
Presentation transcript:

GRAVITATIONAL WAVES FROM NS INTERIORS C. Peralta, M. Bennett, M. Giacobello, A. Melatos, A. Ooi, A. van Eysden, S. Wyithe (U. Melbourne and AEI) 1.Superfluid turbulence 2.Post-glitch relaxation 3.Rigorous model → parametrised template → nuclear physics (viscosity, compressibility)

CONTINUOUS SOURCE Long-lived (days → years) periodic signal Superfluid turbulence as pulsar spins down ( Re ≈ ) Post-glitch relaxation (Ekman pumping) Follows burst signal of glitch itself (msec?) Not discussed here... R-modes continuously excited in core (Andersson et al. 99; Nayyar & Owen 06) ; cf. ocean r-modes (Heyl 04) Amplitude and threshold probe superfluid core and viscous crust-core boundary layer (Lindblom & Mendell 99; Bildsten & Ushomirsky 00; Levin & Ushomirsky 01) C-C diff. rotation (glitches)→ nonaxisymmetric superfluid flows

SUPERFLUID CIRCULATION Differential rotation → meridional circulation superfluid → HVBK two-fluid model (3D) Quantised vortices ↔ mutual friction oscillating hydro torque Re=10 4 EKMAN PUMPING (Peralta et al. 05, 06, 07)

MACRO SF TURBULENCE HERRINGBONE & SPIRAL TURBULENCE TAYLOR VORTEX

POST-GLITCH RELAXATION Ekman: fluid spun up in radially expanding boundary layer (meridional → Coriolis) T Ekman = (2E 1/2  )  with E = (2  R 2 )   ≈ Re  Buoyancy inhibits meridional flow less/more according to compressibility K Brunt-Vaisala frequency: N 2 =g 2 (c eq   K  ) Incompressible: K → ∞. Unstratified: N → 0 Nonaxisymmetric perturbation  exp(im  ) Wave strain :

GW SPECTRUM Lorentzian: measure width & peak frequency Extract two of E, N, K if  known  (X-rays) Width ratio independent of E (i.e. viscosity) Amplitude depends on distance, orientation, , and compressibilities… but not E Pol’n ratio: orientation to line of sight (also N, K) EQUATORIAL OBSERVER

h+(f)h+(f) h×(f)h×(f) f f  K  K  K  K  K  N  N  N  N 

EXTRACTING NUCLEAR PHYSICS N i E K Total signal including current quadrupole i i E N N K K E

PHYSICS TO WORRY ABOUT Microscopic turbulence DGI → tangle of quantized vortices Affects the mutual friction coupling ↓ Macroscopic turbulence (Kolmogorov “eddies”) Do large or small eddies dominate the GW signal?

WHAT WILL LIGO TEACH US? SF turbulence Is the core superfluid? Mutual friction & entrainment parameter Viscosity Crust-core coupling

Glitches Measure c eq and K for nuclear matter Do glitches happen faster or slower than one rotation period? Probe “seismic” (avalanche) dynamics Spectrum of non-axisymmetric excitation NO OTHER GOOD WAY TO LEARN SUCH THINGS!