Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze.

Slides:



Advertisements
Similar presentations
Facoltà di Ingegneria Two-band dynamics in semiconductor devices: physical and numerical validation WASCOM05 – XIII Int.Conf. on Waves and Stability in.
Advertisements

Wigner approach to a new two-band envelope function model for quantum transport n. 1 di 22 Facoltà di Ingegneria ICTT19 – 19 th International Conference.
Wigner approach to a two-band electron-hole semi-classical model n. 1 di 22 Graz June 2006 Wigner approach to a two-band electron-hole semi-classical model.
TWO-BAND MODELS FOR ELECTRON TRANSPORT IN SEMICONDUCTOR DEVICES
Wigner approach to a new two-band envelope function model for quantum transport n. 1 di 22 Facoltà di Ingegneria ICTT19 – 19 th International Conference.
Quantum One: Lecture 6. The Initial Value Problem for Free Particles, and the Emergence of Fourier Transforms.
Lecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory and effective mass Theory of.
Lecture #5 OUTLINE Intrinsic Fermi level Determination of E F Degenerately doped semiconductor Carrier properties Carrier drift Read: Sections 2.5, 3.1.
Quantum One: Lecture 5a. Normalization Conditions for Free Particle Eigenstates.
Graphene: why πα? Louis Kang & Jihoon Kim
Plasma Astrophysics Chapter 3: Kinetic Theory Yosuke Mizuno Institute of Astronomy National Tsing-Hua University.
CHAPTER 3 Introduction to the Quantum Theory of Solids
Tomographic approach to Quantum Cosmology Cosimo Stornaiolo INFN – Sezione di Napoli Fourth Meeting on Constrained Dynamics and Quantum Gravity Cala Gonone.
No friction. No air resistance. Perfect Spring Two normal modes. Coupled Pendulums Weak spring Time Dependent Two State Problem Copyright – Michael D.
AME Int. Heat Trans. D. B. GoSlide 1 Non-Continuum Energy Transfer: Gas Dynamics.
Exam Study Practice Do all the reading assignments. Be able to solve all the homework problems without your notes. Re-do the derivations we did in class.
Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze.
Mechanics of Rigid Bodies
Crystal Lattice Vibrations: Phonons
Density Matrix Density Operator State of a system at time t:
Computational Solid State Physics 計算物性学特論 第4回 4. Electronic structure of crystals.
1 Lecture IX dr hab. Ewa popko Electron dynamics  Band structure calculations give E(k)  E(k) determines the dynamics of the electrons.
ENE 311 Lecture 2. Diffusion Process The drift current is the transport of carriers when an electric field is applied. There is another important carrier.
Quantum Mechanics (14/2) CH. Jeong 1. Bloch theorem The wavefunction in a (one-dimensional) crystal can be written in the form subject to the condition.
UNIT 1 FREE ELECTRON THEORY.
Ch ; Lecture 26 – Quantum description of absorption.
EEE 3394 Electronic Materials
Electronic Band Structures electrons in solids: in a periodic potential due to the periodic arrays of atoms electronic band structure: electron states.
Potential Step Quantum Physics 2002 Recommended Reading: Harris Chapter 5, Section 1.
Ch 2. The Schrödinger Equation (S.E)
More Bandstructure Discussion. Model Bandstructure Problem One-dimensional, “almost free” electron model (easily generalized to 3D!) (BW, Ch. 2 & Kittel’s.
Chapter 11 Angular Momentum. Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum.  In.
Normal Modes of Vibration One dimensional model # 1: The Monatomic Chain Consider a Monatomic Chain of Identical Atoms with nearest-neighbor, “Hooke’s.
MODELING MATTER AT NANOSCALES 6.The theory of molecular orbitals for the description of nanosystems (part II) The density matrix.
ELECTRON THEORY OF METALS 1.Introduction: The electron theory has been developed in three stages: Stage 1.:- The Classical Free Electron Theory : Drude.
Model Bandstructure Problem One-dimensional, “almost free” electron model (easily generalized to 3D!) (Kittel’s book, Ch. 7 & MANY other references)
The quantum kicked rotator First approach to “Quantum Chaos”: take a system that is classically chaotic and quantize it.
EE105 - Spring 2007 Microelectronic Devices and Circuits
Lecture 21 Optical properties. Incoming lightReflected light Transmitted light Absorbed light Heat Light impinging onto an object (material) can be absorbed,
A. Ambrosetti, F. Pederiva and E. Lipparini
Lecture 3. Full statistical description of the system of N particles is given by the many particle distribution function: in the phase space of 6N dimensions.
Prof. M.A. Thomson Michaelmas Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 3 : Interaction by Particle Exchange and QED X X.
Chapter 3 Postulates of Quantum Mechanics. Questions QM answers 1) How is the state of a system described mathematically? (In CM – via generalized coordinates.
CSE251 CSE251 Lecture 2 and 5. Carrier Transport 2 The net flow of electrons and holes generate currents. The flow of ”holes” within a solid–state material.
Lecture from Quantum Mechanics. Marek Zrałek Field Theory and Particle Physics Department. Silesian University Lecture 6.
Systems of Identical Particles
Tunable excitons in gated graphene systems
Density Matrix Density Operator State of a system at time t:
Handout 3 : Interaction by Particle Exchange and QED
Dynamical correlations & transport coefficients
Chapter 3 Energy Band Theory.
Open quantum systems.
Do all the reading assignments.
Modelling & Simulation of Semiconductor Devices
Lecture 2:
The k∙p Method Brad Malone Group Meeting 4/24/07.
Quantum mechanics from classical statistics
Band Theory The other approach to band theory solves the Schrodinger equation using a periodic potential to represent the Coulomb attraction of the positive.
Quantum One.
Wigner approach to a new two-band
Elements of Quantum Mechanics
Quantum One.
Quantum One.
Dynamical correlations & transport coefficients
Band Theory of Solids 1.
Chapter 4 Two-Level Systems.
PHY 752 Solid State Physics
Quantum Mechanical Treatment of The Optical Properties
Nonlinear response of gated graphene in a strong radiation field
Presentation transcript:

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 1 di 28 Giornata di lavoro Mathematical modeling and numerical analysis of quantum systems with applications to nanosciences Firenze, 16 dicembre 2005 Giovanni Frosali Dipartimento di Matematica Applicata “G.Sansone” MULTIBAND TRANSPORT MODELS FOR SEMICONDUCTOR DEVICES

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 2 di 28 Research group on semicoductor modeling at University of Florence Dipartimento di Matematica Applicata “G.Sansone”  Giovanni Frosali  Chiara Manzini (Munster)  Michele Modugno (Lens-INFN) Dipartimento di Matematica “U.Dini”  Luigi Barletti Dipartimento di Elettronica e Telecomunicazioni  Stefano Biondini  Giovanni Borgioli  Omar Morandi Università di Ancona  Lucio Demeio Others: G.Alì (Napoli), C.DeFalco (Milano), A.Majorana(Catania), C.Jacoboni, P.Bordone et. al. (Modena)

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 3 di 28 The spectrum of the Hamiltonian of a quantum particle in a periodic potential is continuous and characterized by (allowed) "energy bands“ separated by (forbidden) “band gaps". In the presence of additional potentials, the projections of the wave function on the energy eigenspaces (Floquet subspaces) are coupled by the Schrödinger equation, which allows interband transitions to occur. RITD Band Diagram Negibible coupling: single-band approximation This is no longer possible when the architect- ure of the device is such that other bands are accessible to the carriers. In some nanometric semiconductor device like Interband Resonant Tunneling Diode, transport due to valence electrons becomes important. TWO-BAND APPROXIMATION

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 4 di 28 Multiband models are needed: the charge carriers can be found in a super-position of quantum states belonging to different bands. Different methods are currently employed for characterizing the band structures and the optical properties of heterostructures, such as envelope functions methods (effective mass theory), tight-binding, pseudopotential methods,…  Schrödinger-like models (Barletti, Borgioli, Modugno, Morandi, etc.)  Wigner function approach (Bertoni, Jacoboni, Borgioli, Frosali, Zweifel, Barletti, Manzini, etc.)  Hydrodynamics multiband formalisms (Alì, Barletti, Borgioli, Frosali, Manzini, etc) OUR APPROACH TO THE PROBLEM

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 5 di 28 MULTIBAND TRANSPORT General Multiband Models General Multiband Models KANE model MeF model WIGNER APPROACH WIGNER APPROACH SCHRÖDINGER APPROACH SCHRÖDINGER APPROACH HYDRODYNAMIC MODELS HYDRODYNAMIC MODELS QUANTUM DRIFT-DIFFUSION MODELS QUANTUM DRIFT-DIFFUSION MODELS Isothermal QDD Isothermal QDD Chapman- Enskog expansion Chapman- Enskog expansion

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 6 di 28 We filter the solution Envelope function models Multiband “KP” system S chrödinger equation Hamiltonian. The envelope functions and are the projections of on the Wannier basis, and therefore the corresponding multi-band densities represent the (cell-averaged) probability amplitude of finding an electron on the conduction or valence bands, respectively.

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 7 di 28 The quantity represents the mean probability density to find the electron into the n-th band, in a lattice cell. MEF model: first order Physical meaning of the envelope function:

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 8 di 28 intraband dynamic Zero external electric field: exact electron dynamic MEF model: first order Effective mass dynamics:

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 9 di 28 intraband dynamic interband dynamic first order contribution of transition rate of Fermi Golden rule Coupling terms: MEF model: first order

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 10 di 28 Wigner function: Phase plane representation: pseudo probability function Wigner equation Liouville equation CLASSICAL LIMIT Moments of Wigner function: Wigner picture:

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 11 di 28 Density matrix Multiband Wigner function Evolution equation WIGNER APPROACH Wigner picture for Schrödinger-like models

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 12 di 28 Wigner picture: Two-band Wigner model pseudo-differential operators:

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 13 di 28  intraband dynamic: zero coupling if the external potential is null Wigner picture: Two-band Wigner model

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 14 di 28 intraband dynamic: zero coupling if the external potential is null interband dynamic: coupling like G-R via Wigner picture: Two-band Wigner model

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 15 di 28 Mathematical setting Hilbert space: Weighted spaces: 1 D problem: If the external potential the two-band Wigner system admits a unique solution

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 16 di 28 unbounded operator unitary group on Stone theorem Mathematical setting

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 17 di 28 Symmetric bounded operators Mathematical setting If the external potential a unique solution the two band Wigner system admits The operator generates semigroup The unique solution is given by Simulation

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 18 di 28

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 19 di 28 Hydrodynamic version of the MEF MODEL We can derive the hydrodynamic version of the MEF model using the WKB method (quantum system at zero temperature). Look for solutions in the form we introduce the particle densities Then is the electron density in conduction and valence bands. We write the coupling terms in a more manageable way, introducing the complex quantity with Vai alla 21

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 20 di 28 We introduce the rescaled Planck constant parameter MEF model reads in the rescaled form: with with the dimensional where are typical dimensional quantities and the effective mass is assumed to be equal in the two bands

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 21 di 28 Quantum hydrodynamic quantities Quantum electron current densities when i=j, we recover the classical current densities Complex velocities given by osmotic and current velocities can be expressed in terms of plus the phase difference Osmotic and current velocities

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 22 di 28 The quantum counterpart of the classical continuity equation Taking account of the wave form, the MEF system gives rise to Summing the previous equations, we obtain the balance law where, compared to the Kane model, the “interband density” Is missing. The previous balance law is just the quantum counterpart of the classical continuity equation.

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 23 di 28 Next, we derive a system of coupled equations for phases, obtaining a system equivalent to the coupled Schrödinger equations. Then we obtain a system for the currents and The equations can be put in a more familiar form with the quantum Bohm potentials It is important to notice that, differently from the uncoupled model, equations for densities and currents are not equivalent to the original equations, due to the presence of.

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 24 di 28 Recalling that and are given by the hydrodynamic quantities and, we have the HYDRODYNAMIC SYSTEM for the MEF model

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 25 di 28 The DRIFT-DIFFUSION scaling We rewrite the current equations, introducing a relaxation time, in order to simulate all the mechanisms which force the system towards the statistical mechanical equilibrium. In analogy with the classical diffusive limit for a one-band system, we introduce the scaling Finally, after having expressed the osmotic and current velocities, in terms of the other hydrodynamic quantities, as tends to zero, we formally obtain the ZER0-TEMPERATURE QUANTUM DRIFT-DIFFUSION MODEL for the MEF system.

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 26 di 28 Hydrodynamic version of the MEF MODEL

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 27 di 28 NON ZERO TEMPERATURE hydrodynamic model We consider an electron ensemble which is represented by a mixed quantum mechanical state, to obtain a nonzero temperature model for a Kane system. We rewrite the MEF system for the k-th state, with occupation probability We use the Madelung-type transform We define the densities and the currents corresponding to the two mixed states We define Performing the analogous procedure and with an appropriate closure, we get

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 28 di 28 Isothermal QUANTUM DRIFT-DIFFUSION for the MEF MODEL

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 29 di 28 Thanks for your attention !!!!!

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 30 di 28 REMARKS We derived a set of quantum hydrodynamic equations from the two-band MEF model. This system, which is closed, can be considered as a zero- temperature quantum fluid model. In addition to other quantities, we have the tensors and Starting from a mixed-states condition, we derived the corresponding non zero-temperature quantum fluid model, which is not closed. Closure of the quantum hydrodynamic system Numerical treatment Heterogeneous materials Generalized MEF model NEXT STEPS similar to the temperature tensor of kinetic theory.

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 31 di 28 Problems in the practical use of the Kane model: Kane model Strong coupling between envelope function related to different band index, even if the external field is null Critical choice in the cut off for the band index Poor physical interpretation

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 32 di 28 Electromagnetic and spin effects are disregarded, just like the field generated by the charge carriers themselves. Dissipative phenomena like electron- phonon collisions are not taken into account. The dynamics of charge carriers is considered as confined in the two highest energy bands of the semiconductor, i.e. the conduction and the (non- degenerate) valence band, around the point is the "crystal" wave vector. The point is assumed to be a minimum for the conduction band and a maximum for the valence band. The physical environment where The Hamiltonian introduced in the Schrödinger equation is where is the periodic potential of the crystal and V an external potential.

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 33 di 28 Interband Tunneling: PHYSICAL PICTURE Interband transition in the 3-d dispersion diagram. The transition is from the bottom of the conduction band to the top of the val-ence band, with the wave number becoming imaginary. Then the electron continues propagating into the valence band. Kane model Vai alla 9

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 34 di 28 KANE MODEL The Kane model consists into a couple of Schrödinger-like equations for the conduction and the valence band envelope functions. be the valence band envelope function. Letbe the conduction band electron envelope function and m is the bare mass of the carriers, is the minimum (maximum) of the conduction (valence) band energy P is the coupling coefficient between the two bands (the matrix element of the gradient operator between the Bloch functions)

Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 35 di 28 Remarks on the Kane model The external potential V affects the band energy terms, but it does not appear in the coupling coefficient P. There is an interband coupling even in absence of an external potential. The interband coefficient P increases when the energy gap between the two bands increases (the opposite of physical evidence). The envelope functions are obtained expanding the wave function on the basis of the periodic part of the Bloch functions evaluated at k=0, where.