A coherent subnanosecond single electron source

Slides:



Advertisements
Similar presentations
PHYSIQUE MESOSCOPIQUE
Advertisements

Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider
Separation of neutral and charge modes in one dimensional chiral edge channels
First things first ,980. Outline Physics = surprise Physics = surprise Electron counting = field theory Electron counting = field theory Full.
Phase Selection in Interference of Non-Classical Sources
Emergent Majorana Fermion in Cavity QED Lattice
AC CONDUCTANCE AND NON-SYMMETRIZED NOISE AT FINITE FREQUENCY IN QUANTUM WIRE AND CARBON NANOTUBE Adeline CRÉPIEUX 1, Cristina BENA 2,3 and Inès SAFI 2.
QUANTUM DYNAMICS OF A COOPER PAIR TRANSITOR COUPLED TO A DC-SQUID Aurélien Fay under the supervision of : Olivier BUISSON - Wiebke GUICHARD - Laurent LEVY.
14 février 2011Evaluation AERES1 Equipe de Nanophysique – Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
QUANTUM TRANSPORT IN THE TUNNELING AND COTUNNELING REGIMENS Javier F. Nossa M.
Chernogolovka, September 2012 Cavity-coupled strongly correlated nanodevices Gergely Zaránd TU Budapest Experiment: J. Basset, A.Yu. Kasumov, H. Bouchiat,
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Multi-terminal spin dependent transport in carbon nanotubes Chéryl FEUILLET-PALMA Laboratoire Pierre Aigrain Ecole Normale Supérieure, Paris France Co-workers.
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
S. Y. Hsu ( 許世英 ) and K. M. Liu( 劉凱銘 ) May 29, 2007 NSC M and NSC M Department of Electrophysics, National Chiao Tung University.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
Quantum shot noise: from Schottky to Bell
Scattering theory of conductance and noise Markus Büttiker University of Geneva Multi-probe conductors.
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106,
Photon Supression of the shot noise in a quantum point contact Eva Zakka Bajjani Julien Ségala Joseph Dufouleur Fabien Portier Patrice Roche Christian.
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Julien Gabelli Bertrand Reulet Non-Gaussian Shot Noise in a Tunnel Junction in the Quantum Regime Laboratoire de Physique des Solides Bât. 510, Université.
Experiments on Luttinger liquid properties of
Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices Yoav Lahini 1, Assaf Avidan 1, Francesca Pozzi 2, Marc Sorel 2,
Optical study of Spintronics in III-V semiconductors
Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers V. S.-W. Chung(鐘淑維)1,2, P. Samuelsson3 ,and.
Quantum Electron Optics Electron Entanglement
L. Coolen, C.Schwob, A. Maître Institut des Nanosciences de Paris (Paris) Engineering Emission Properties with Plasmonic Structures B.Habert, F. Bigourdan,
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Markus Büttiker University of Geneva Technion, Haifa, Israel, Jan. 11, 2007 Quantum shot noise: from Schottky to Bell.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Nature (2010) Department of Physics, Indian Institute of Science,

Witnessing Quantum Coherence IWQSE 2013, NTU Oct. 15 (2013) Yueh-Nan Chen ( 陳岳男 ) Dep. of Physics, NCKU National Center for Theoretical Sciences (South)
„To bunch or not to bunch” Tóvári Endre Journal Club márc. 8. Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources.
Magnetization dynamics
Photon Efficiency Measures & Processing Dominic W. Berry University of Waterloo Alexander I. LvovskyUniversity of Calgary.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
Local Density of States in Mesoscopic Samples from Scanning Gate Microscopy Julian Threatt EE235.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Optical pure spin current injection in graphene Julien Rioux * and Guido Burkard Department of Physics, University of Konstanz, D Konstanz, Germany.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Alberto Amo, C. Adrados, J. Lefrère, E. Giacobino, A. Bramati
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
Laboratoire de Photonique et de Nanostructures R. Giraud Aussois, March 2007  Nano Team 19–22 March 2007 “ GDR Physique Quantique Mésoscopique ” Universal.
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Basics of edge channels in IQHE doing physics with integer edge channels studies of transport in FQHE regime deviations from the ‘accepted’ picture Moty.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Orbitally phase coherent spintronics
BEC-BCS cross-over in the exciton gas
HRI Winter School 2015, Allahabad Interferometry in the Quantum Hall Effect Regime Lecture 2: Quantum Electronics Tools exercises Go over equations Naïve.
Entangled Photons from Quantum Dots
Parallel Circuits 119.
Presentation transcript:

A coherent subnanosecond single electron source Gwendal Fève Groupe de Physique Mésoscopique Laboratoire Pierre Aigrain ENS Jean-Marc Berroir Bernard Plaçais Christian Glattli Takis Kontos Julien Gabelli Adrien Mahé Samples made at : Laboratoire de Photonique et Nanostructures (LPN) Yong Jin Bernard Etienne Antonella Cavana

Motivation Gaz 2D I VG Weizmann Institute, Israel Y. Ji et al Nature 422 415 (2003) Poster P. Roulleau, CEA Saclay

Single electron sources DC biased Fermi sea is a noiseless electron source: D Kumar et al. PRL (1996) 0,0 0,2 0,4 0,6 0,8 1,0 ( ) 1 - T 2 + Fano reduction factor Conductance 2e² / h 0. 0.5 1. 1.5 2. 2.5 .8 .6 .4 .2 No temporal control A. Kumar et al. Phys. Rev. Lett. 76 (1996) 2778.. Objective : realisation of a single electron source similar to single photon sources Time controlled injection of a single electron in a quantum conductor Electron optics with one or two electrons (entanglement…)

Principle of single charge injection V(t) QPC Gaz 2D Boîte e D V(t)

Principle of single charge injection V(t) QPC Gaz 2D Boîte e V(t)

Principle of single charge injection V(t) QPC Gaz 2D Boîte e I V(t) 100 ps for D=2.5°K and D =0.2

The quantum RC circuit l < mm

The quantum RC circuit D=t2 No spin degeneracy Quantum dot D=t2 No spin degeneracy One dimensional conductor

Linear dynamics of the quantum RC circuit Linear regime,

The quantum RC circuit, T=0K CPQ , dot density of states The resistance is constant, independent of transmission, and equals half the resistance quantum for a single mode conductor ! M. Büttiker et al PRL 70 4114, PLA180,364-369 (1993)

The quantum RC circuit , T=0K Quantum dot D=t2 kBT << DD Coherent regime kBT >> DD Sequential regime

Complex conductance D Fit by

Conclusion on linear dynamics linear regime: dot spectroscopy complete determination of experimental parameters charge dynamics J.Gabelli, G.Fève et al Science 313 499 (2006)

Towards single charge injection Injection regime : Régime linéaire : Charge moyenne transférée par alternance : Mean transferred charge by alternance : The transferred charge is quantized

Current detection In time domain : Measurement of the first harmonic : Fast averaging acquisition card Acquiris, Temporal resolution 500 ps. Developed by Adrien Mahé Slow excitation f=31.25 MHz 16 odd harmonics of the current courant in a 1 GHz bandwidth « slow » dynamics Measurement of the first harmonic : Faster excitation f=180 MHz and f=515 MHz More accurate determination of the transferred charge And of the escape time in the subnanoseond domain :

Time domain evolution of the current Average on 108 electrons

Response to a non-linear square excitation Simplification : non-linear : First harmonic :

Response to a non-linear square excitation D D<<1 , D»1 1/D << e

First harmonic measurement 2eVexc=3/2 D 2eVexc=5/4 D 2eVexc= D 2eVexc=3/4 D 2eVexc=1/2 D 2eVexc=1/4 D (linear regime)

Quantization of the AC current N(e)

Quantization of the AC current N(e)

Quantization of the AC current N(e)

Transmission dependence

Dot potential dependence f = 182 MHz N(e)

Escape time

Comparison with modelling

AC current diamonds 2eVexc VG (mV) Im (Iw) (ef) 2 3 4 1 Modelling : D 0.02 0.15 0.4 0.8 0.9 Modelling : 2eVexc -912 -907 -902 -897 -892 -887 VG (mV) Im (Iw) (ef) 2 3 4 1

Conclusion Quantization of the injected charge 1st stage towards the realisation of a single electron source Injection dyanmics measured in a large temporal range from 0.1 to 10 ns Excellent agreement with a simple modeling

Prospect Electron-electron collision : Indistinguishibility of two independent sources

Experimental setup dc rf local G=X+iY 3 cm 3 mm