CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis

Slides:



Advertisements
Similar presentations
Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group
Advertisements

Gapped Blast and PSI BLAST Basic Local Alignment Search Tool ~Sean Boyle Basic Local Alignment Search Tool ~Sean Boyle.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis
1 “INTRODUCTION TO BIOINFORMATICS” “SPRING 2005” “Dr. N AYDIN” Lecture 4 Multiple Sequence Alignment Doç. Dr. Nizamettin AYDIN
Heuristic alignment algorithms and cost matrices
Sequence alignment SEQ1: VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKK VADALTNAVAHVDDPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHA SLDKFLASVSTVLTSKYR.
Biological Sequence Analysis Chapter 3. Protein Families Organism 1 Organism 2 Enzym e 1 Enzym e 2 Closely relatedSame Function MSEKKQPVDLGLLEEDDEFEEFPAEDWAGLDEDEDAHVWEDNWDDDNVEDDFSNQLRAELEKHGYKMETS.
Multiple Sequence Alignment Algorithms in Computational Biology Spring 2006 Most of the slides were created by Dan Geiger and Ydo Wexler and edited by.
Multiple alignment June 29, 2007 Learning objectives- Review sequence alignment answer and answer questions you may have. Understand how the E value may.
Biological Sequence Analysis Chapter 3 Claus Lundegaard.
What you should know by now Concepts: Pairwise alignment Global, semi-global and local alignment Dynamic programming Sequence similarity (Sum-of-Pairs)
BNFO 602 Lecture 2 Usman Roshan. Sequence Alignment Widely used in bioinformatics Proteins and genes are of different lengths due to error in sequencing.
Alignment methods and database searching April 14, 2005 Quiz#1 today Learning objectives- Finish Dotter Program analysis. Understand how to use the program.
Lecture 9 Hidden Markov Models BioE 480 Sept 21, 2004.
BNFO 240 Usman Roshan. Last time Traceback for alignment How to select the gap penalties? Benchmark alignments –Structural superimposition –BAliBASE.
Sequence similarity.
Multiple Sequence Alignment Mult-Seq-Align allows to detect similarities which cannot be detected with Pairwise-Seq-Align methods. Detection of family.
Pairwise Alignment Global & local alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis.
Sequence Alignments Revisited
Alignment IV BLOSUM Matrices. 2 BLOSUM matrices Blocks Substitution Matrix. Scores for each position are obtained frequencies of substitutions in blocks.
Multiple Sequence Alignments
Multiple sequence alignment methods 1 Corné Hoogendoorn Denis Miretskiy.
CECS Introduction to Bioinformatics University of Louisville Spring 2003 Dr. Eric Rouchka Lecture 3: Multiple Sequence Alignment Eric C. Rouchka,
CISC667, F05, Lec8, Liao CISC 667 Intro to Bioinformatics (Fall 2005) Multiple Sequence Alignment Scoring Dynamic Programming algorithms Heuristic algorithms.
Introduction to Bioinformatics From Pairwise to Multiple Alignment.
Alignment methods II April 24, 2007 Learning objectives- 1) Understand how Global alignment program works using the longest common subsequence method.
Chapter 5 Multiple Sequence Alignment.
Alignment Statistics and Substitution Matrices BMI/CS 576 Colin Dewey Fall 2010.
Multiple Sequence Alignment CSC391/691 Bioinformatics Spring 2004 Fetrow/Burg/Miller (Slides by J. Burg)
Multiple sequence alignment
Biology 4900 Biocomputing.
Practical multiple sequence algorithms Sushmita Roy BMI/CS 576 Sushmita Roy Sep 24th, 2013.
Multiple Sequence Alignment May 12, 2009 Announcements Quiz #2 return (average 30) Hand in homework #7 Learning objectives-Understand ClustalW Homework#8-Due.
Evolution and Scoring Rules Example Score = 5 x (# matches) + (-4) x (# mismatches) + + (-7) x (total length of all gaps) Example Score = 5 x (# matches)
ZORRO : A masking program for incorporating Alignment Accuracy in Phylogenetic Inference Sourav Chatterji Martin Wu.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis
Pairwise Sequence Alignment. The most important class of bioinformatics tools – pairwise alignment of DNA and protein seqs. alignment 1alignment 2 Seq.
Sequence Analysis CSC 487/687 Introduction to computing for Bioinformatics.
Multiple Sequence Alignments Craig A. Struble, Ph.D. Department of Mathematics, Statistics, and Computer Science Marquette University.
Sequence alignment SEQ1: VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKK VADALTNAVAHVDDPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHA SLDKFLASVSTVLTSKYR.
Comp. Genomics Recitation 3 The statistics of database searching.
Construction of Substitution Matrices
Using Traveling Salesman Problem Algorithms to Determine Multiple Sequence Alignment Orders Weiwei Zhong.
Bioinformatics Multiple Alignment. Overview Introduction Multiple Alignments Global multiple alignment –Introduction –Scoring –Algorithms.
Multiple alignment: Feng- Doolittle algorithm. Why multiple alignments? Alignment of more than two sequences Usually gives better information about conserved.
Sequence Alignment Csc 487/687 Computing for bioinformatics.
Function preserves sequences Christophe Roos - MediCel ltd Similarity is a tool in understanding the information in a sequence.
Sequence Alignment Only things that are homologous should be compared in a phylogenetic analysis Homologous – sharing a common ancestor This is true for.
Chapter 3 Computational Molecular Biology Michael Smith
Multiple Alignment and Phylogenetic Trees Csc 487/687 Computing for Bioinformatics.
BLAST: Basic Local Alignment Search Tool Altschul et al. J. Mol Bio CS 466 Saurabh Sinha.
Pairwise sequence alignment Lecture 02. Overview  Sequence comparison lies at the heart of bioinformatics analysis.  It is the first step towards structural.
Sequence Alignment.
Burkhard Morgenstern Institut für Mikrobiologie und Genetik Molekulare Evolution und Rekonstruktion von phylogenetischen Bäumen WS 2006/2007.
Construction of Substitution matrices
The statistics of pairwise alignment BMI/CS 576 Colin Dewey Fall 2015.
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis
1 Multiple Sequence Alignment(MSA). 2 Multiple Alignment Number of sequences >2 Global alignment Seek an alignment that maximizes score.
Protein Sequence Alignment Multiple Sequence Alignment
V diagonal lines give equivalent residues ILS TRIVHVNSILPSTN V I L S T R I V I L P E F S T Sequence A Sequence B Dot Plots, Path Matrices, Score Matrices.
V diagonal lines give equivalent residues ILS TRIVHVNSILPSTN V I L S T R I V I L P E F S T Sequence A Sequence B Dot Plots, Path Matrices, Score Matrices.
Multiple Sequence Alignment (cont.) (Lecture for CS397-CXZ Algorithms in Bioinformatics) Feb. 13, 2004 ChengXiang Zhai Department of Computer Science University.
More on HMMs and Multiple Sequence Alignment BMI/CS 776 Mark Craven March 2002.
Substitution Matrices and Alignment Statistics BMI/CS 776 Mark Craven February 2002.
Multiple Alignment Anders Gorm Pedersen / Henrik Nielsen
Multiple sequence alignment (msa)
Pairwise Alignment Global & local alignment
Introduction to Bioinformatics
Alignment IV BLOSUM Matrices
Presentation transcript:

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple Alignment Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Refresher: pairwise alignments 43.2% identity; Global alignment score: alpha V-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSA : :.:.:. : : ::::.. : :.::: :....: :..: : ::: :. beta VHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNP alpha QVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHL.::.::::: :.....::.: ::.:: ::.::: ::.::.. :..:: :. beta KVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHF alpha PAEFTPAVHASLDKFLASVSTVLTSKYR :::: :.:..:.:.:...:. ::. beta GKEFTPPVQAAYQKVVAGVANALAHKYH

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Refresher: pairwise alignments Alignment score is calculated from substitution matrixAlignment score is calculated from substitution matrix Identities on diagonal have high scoresIdentities on diagonal have high scores Similar amino acids have high scoresSimilar amino acids have high scores Dissimilar amino acids have low (negative) scoresDissimilar amino acids have low (negative) scores Gaps penalized by gap-opening + gap elongationGaps penalized by gap-opening + gap elongation K L A A S V I L S D A L K L A A S D A L x (-1)=-13 A 5 R -2 7 N D C Q E G A R N D C Q E G...

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Refresher: pairwise alignments The number of possible pairwise alignments increases explosively with the length of the sequences: Two protein sequences of length 100 amino acids can be aligned in approximately different ways bottles of beer would fill up our entire galaxy

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Refresher: pairwise alignments Solution:Solution: dynamic programming Essentially:Essentially: the best path through any grid point in the alignment matrix must originate from one of three previous points Far fewer computationsFar fewer computations Best alignment guaranteed to be foundBest alignment guaranteed to be found T C G C A T C A x

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Refresher: pairwise alignments Most used substitution matrices are themselves derived empirically from simple multiple alignmentsMost used substitution matrices are themselves derived empirically from simple multiple alignments Multiple alignment A/A 2.15% A/C 0.03% A/D 0.07%... Calculate substitution frequencies Score(A/C) = log Freq(A/C),observed Freq(A/C),expected Convert to scores

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Database searching Using pairwise alignments to search databases for similar sequencesUsing pairwise alignments to search databases for similar sequences Query sequence Database

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple alignment

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple alignments: what use are they? Starting point for studies of molecular evolutionStarting point for studies of molecular evolution

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple alignments: what use are they? Characterization of protein families:Characterization of protein families: –Identification of conserved (functionally important) sequence regions –Construction of profiles for further database searching –Prediction of structural features (disulfide bonds, amphipathic alpha-helices, surface loops, etc.)

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Scoring a multiple alignment: the “sum of pairs” score...A......S......T... One column from alignment AA: 4, AS: 1, AT:0 AS: 1, AT: 0 ST: 1 SP-score: = 7 Weighted sum of pairs: each SP-score is multiplied by a weight reflecting the evolutionary distance (avoids undue influence on score by sets of very similar sequences) => In theory, it is possible to define an alignment score for multiple alignments (there are several alternative scoring systems)

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple alignment: dynamic programming is only feasible for very small data sets In theory, optimal multiple alignment can be found by dynamic programming using a matrix with more dimensions (one dimension per sequence)In theory, optimal multiple alignment can be found by dynamic programming using a matrix with more dimensions (one dimension per sequence) BUT even with dynamic programming finding the optimal alignment very quickly becomes impossible due to the astronomical number of computationsBUT even with dynamic programming finding the optimal alignment very quickly becomes impossible due to the astronomical number of computations Full dynamic programming only possible for up to about 4-5 protein sequences of average lengthFull dynamic programming only possible for up to about 4-5 protein sequences of average length Even with heuristics, not feasible for more than 7-8 protein sequencesEven with heuristics, not feasible for more than 7-8 protein sequences Never used in practiceNever used in practice Dynamic programming matrix for 3 sequences For 3 sequences, optimal path must come from one of 7 previous points

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Multiple alignment: an approximate solution Progressive alignment (ClustalX and other programs):Progressive alignment (ClustalX and other programs): 1. Perform all pairwise alignments; keep track of sequence similarities between all pairs of sequences (construct “distance matrix”) 2. Align the most similar pair of sequences 3. Progressively add sequences to the (constantly growing) multiple alignment in order of decreasing similarity.

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Progressive alignment: details 1)Perform all pairwise alignments, note pairwise distances (construct “distance matrix”) 2) Construct pseudo-phylogenetic tree from pairwise distances S1 S2 S3 S4 6 pairwise alignments S1 S2 S3 S4 S1 S2 3 S3 1 3 S S1 S3S4S2 S1 S2 S3 S4 S1 S2 3 S3 1 3 S “Guide tree”

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Progressive alignment: details 3)Use tree as guide for multiple alignment: a)Align most similar pair of sequences using dynamic programming b)Align next most similar pair c)Align alignments using dynamic programming - preserve gaps S1 S3S4S2 S1 S3 S2 S4 S1 S3 S2 S4 New gap to optimize alignment of (S2,S4) with (S1,S3)

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Scoring profile alignments...A......S......T... + One column from alignment AS: 1, AT:0 SS: 4, ST:1 Score: = Compare each residue in one profile to all residues in second profile. Score is average of all comparisons.

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Additional ClustalX heuristics Sequence weighting:Sequence weighting: –scores from similar groups of sequences are down-weighted Variable substitution matrices:Variable substitution matrices: –during alignment ClustalX uses different substitution matrices depending on how similar the sequences/profiles are Variable gap penalties:Variable gap penalties:  gap penalties depend on substitution matrix  gap penalties depend on similarity of sequences  reduced gap penalties at existing gaps  increased gap penalties CLOSE to existing gaps  reduced gap penalties in hydrophilic stretches (presumed surface loop)  residue-specific gap penalties  and more...

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Global methods (e.g., ClustalX) get into trouble when data is not globally related!!!

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Global methods (e.g., ClustalX) get into trouble when data is not globally related!!! Clustalx What you want

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Global methods (e.g., ClustalX) get into trouble when data is not globally related!!! Clustalx Possible solutions: (1)Cut out conserved regions of interest and THEN align them (2)Use method that deals with local similarity (e.g., mafft) What you wantWhat you might get

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Other multiple alignment programs pileup multalign multal saga hmmt MUSCLE ProbCons DIALIGN SBpima MLpima T-Coffee mafft poa prank...

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Quantifying the Performance of Protein Sequence Multiple Alignment Programs Compare to alignment that is known (or strongly believed) to be correctCompare to alignment that is known (or strongly believed) to be correct Quantify by counting e.g. fraction of correctly paired residuesQuantify by counting e.g. fraction of correctly paired residues Option 1: Compare performance to benchmark data sets for which 3D structures and structural alignments are available (BALiBASE, PREfab, SABmark, SMART).Option 1: Compare performance to benchmark data sets for which 3D structures and structural alignments are available (BALiBASE, PREfab, SABmark, SMART). –Advantage: real, biological data with real characteristics –Problem: we only have good benchmark data for core regions, no good knowledge of how gappy regions really look Option 2: Construct synthetic alignments by letting a computer simulate evolution of a sequence along a phylogenetic treeOption 2: Construct synthetic alignments by letting a computer simulate evolution of a sequence along a phylogenetic tree –Advantage: we know the real alignment including where the gaps are –Problem: Simulated data may miss important aspects of real biological data

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Performance on BALiBASE benchmark Dialign T-Coffee ClustalW Poa

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Performance on BALiBASE benchmark

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Performance on simulated data, few gaps

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Performance on simulated data, many gaps

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS So which method should I choose? Performance depends on way of measuring and on nature of data setPerformance depends on way of measuring and on nature of data set No single method performs best under all conditions (although mafft and ProbCons look quite good)No single method performs best under all conditions (although mafft and ProbCons look quite good) To be on the safe side, you ought to check that results are robust to alignment uncertainty (try a number of methods, check conclusions on each alignment)To be on the safe side, you ought to check that results are robust to alignment uncertainty (try a number of methods, check conclusions on each alignment) Future perspectives: Bayesian techniques, alignment inferred along with rest of analysis, conclusions based on probability distribution over possible alignments.Future perspectives: Bayesian techniques, alignment inferred along with rest of analysis, conclusions based on probability distribution over possible alignments.

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS Special purpose alignment programs RevTrans: alignment of coding DNA based on information at protein levelRevTrans: alignment of coding DNA based on information at protein level Codon-codon boundaries maintainedCodon-codon boundaries maintained

CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS MaxAlign: remove subset of sequences to get fewer gapped columnsMaxAlign: remove subset of sequences to get fewer gapped columns Detect non-homologous or mis- aligned sequencesDetect non-homologous or mis- aligned sequences Special purpose alignment programs