Ecosystem composition and CO 2 flux variability Corinne Le Quéré Max-Planck-Institut für Biogeochemie, Jena, Germany now at University of East Anglia/British.

Slides:



Advertisements
Similar presentations
Primary production ( 14 C) and phosphate availability in the south Pacific ocean T. MOUTIN, P. RIMMELIN Laboratoire d Océanographie et de Biogéochimie.
Advertisements

Assessing the efficiency of iron fertilization on atmospheric CO2 using an intermediate complexity ecosystem model of the global ocean Olivier Aumont 1.
Physical / Chemical Drivers of the Ocean in a High CO 2 World Laurent Bopp IPSL / LSCE, Gif s/ Yvette, France.
1 Margaret Leinen Chief Science Officer Climos Oceans: a carbon sink or sinking ecosystems?
Ocean Biogeochemistry (C, O 2, N, P) Achievements and challenges Nicolas Gruber Environmental Physics, ETH Zürich, Zurich, Switzerland. Using input from.
Climate Change and the Oceans
NPZD DGOM Interannual chla variability (mgChl/m3) PISCES-T Observations (SeaWiFS) Calcifiers PO 4 Fe PO 4 DOCZoo POC export.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Marine Ecosystems and Food Webs. Carbon Cycle Marine Biota Export Production.
Biological pump Low latitude versus high latitudes.
Changes in the Southern Ocean biological export production over the period Marie-F. Racault, Corinne Le Quéré & Erik Buitenhuis.
Lecture 10: Ocean Carbonate Chemistry: Ocean Distributions Controls on Distributions What is the distribution of CO 2 added to the ocean? See Section 4.4.
Macro-zooplankton and PlankTOM10 Róisín Moriarty.
Impact of river sources of P, Si and Fe on coastal biogeochemistry da Cunha 1, L.C., Le Quéré 1, C., Buitenhuis 1, E.T., Giraud 1, X. & Ludwig 2, W. 1.
OCN520 Fall 2009 Mid-Term #2 Review Since Mid-Term #1 Ocean Carbonate Distributions Ocean Acidification Stable Isotopes Radioactive Isotopes Nutrients.
6 th Green Ocean Workshop Villefranche sur mer Spring 2007.
MODELLING THE FEEDBACKS BETWEEN PHYTOPLANKTON AND GLOBAL OCEAN PHYSICS 1 Max-Planck-Institut für Biogeochemie, Jena, Germany. 2 University of East Anglia,
Nick Stephens Greencycles Mid-Term Review meeting 21/02/2007 1/18 Ocean Biogeochemistry Nicholas Stephens Max-Planck-Institut für Biogeochemie, Jena.
Ecosystem composition and export production variability Corinne Le Quéré, Erik Buitenhuis, Christine Klaas Max-Planck-Institute for Biogeochemistry, Germany.
OPA – PlankTOM5.0 - DMS Meike Vogt * Corinne Le Quéré Erik T. Buitenhuis Sergio Vallina * Laurent Bopp.
Oceanic Carbon Cycle Upwelling brings nutrients (e.g. PO 4 ) to euphotic zone Photosynthesis (Dissolved Inorg  Particulate Organic Matter) Recycling.
QUESTIONS 1.How do elements in the lithosphere get transferred to the atmosphere? 2.Imagine an early Earth with a weak Sun and frozen ocean (“snowball.
Lecture 10: Ocean Carbonate Chemistry: Ocean Distributions Controls on Distributions What is the distribution of CO 2 added to the ocean? See Section 4.4.
Temporal scales of coastal variability and land-ocean processes J. Salisbury, J. Campbell, D. Vandemark, A. Mahadevan, B. Jonsson, H. Xue, C. Hunt.
The uptake, transport, and storage of anthropogenic CO 2 by the ocean Nicolas Gruber Department of Atmospheric and Oceanic Sciences & IGPP, UCLA.
Vulnerability of the ocean biological pump Corinne Le Quéré University of East Anglia and British Antarctic Survey See notes in individual slides.
Commentary to Richard Lampitt: ‘Linking Surface Ocean and the Deep Sea’ Susanne Neuer.
The Global Ocean Carbon Cycle Rik Wanninkhof, NOAA/AOML Annual OCO review, June 2007: Celebrating Our Past, Observing our Present, Predicting our Future:
Climate modeling: where are we headed? Interactive biogeochemistry Large ensemble simulations (multi-century) Seasonal-interannual forecasts High resolution.
Climate sensitivity: what observations tell us about model predictions Corinne Le Quéré Max-Planck-Institut für Biogeochemie, Jena, Germany Acknowledgements:
The Other Carbon Dioxide Problem Ocean acidification is the term given to the chemical changes in the ocean as a result of carbon dioxide emissions.
MAMA Malta meeting, January 2004 Expert Meeting Towards Operational ecological models in coastal areas
Biogeochemical Controls and Feedbacks on the Ocean Primary Production.
Equatorial Pacific primary productivity: Spatial and temporal variability and links to carbon cycling Pete Strutton College of Oceanic and Atmospheric.
T, light/UV, mixing, Fe, Si, …. Climate change C export CO 2, CH 4, COV CH 3 I DMS DMSe N2ON2O aérosols Structure of the phytolankton community CHX General.
Does Biological Community Structure Influence Biogeochemical Fluxes? JGOFS Says Yes! Anthony F. Michaels University of Southern California Wrigley Institute.
Impact of vertical flux simulation on surface pCO 2 Joachim Segschneider 1, Iris Kriest 2, Ernst Maier-Reimer 1, Marion Gehlen 3, Birgit Schneider 3 1.
Third annual CarboOcean meeting, 4.-7.December 2007, Bremen, Segschneider et al. Uncertainties of model simulations of anthropogenic carbon uptake J. Segschneider,
The Carbon Cycle within the Oceans Allyn Clarke With much help from Ken Denman, Glen Harrison and others.
Working Group 3: What aspects of coastal ecosystems are significant globally? Coastal Zone Impacts on Global Biogeochemistry NCAR, June 2004 Contributed.
First results from the isopycnic ocean carbon cycle model HAMOCC & MICOM/BCM Karen Assmann, Christoph Heinze, Mats Bentsen, Helge Drange Bjerknes Centre.
UDnFmNTYhttps:// UDnFmNTY gmFa0r04https://
ATOC 220 Global Carbon Cycle Recent change in atmospheric carbon The global C cycle and why is the contemporary atmospheric C increasing? How much of the.
ESYS 10 Introduction to Environmental Systems February 28
Tracking the fate of carbon in the ocean using thorium-234 Ken Buesseler Dept. of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution.
Interannual Variability in the Extratropical Ocean Carbon System
N2O-Climate feedback P.Friedlingstein, L. Bopp, S. Zaehle, P. Cadule and A. Friend IPSL/LSCE.
International Workshop for GODAR WESTPAC Global Ocean Data Archeology and Rescue: Scientific Needs from the Carbon Cycle Study in the Ocean Toshiro Saino.
Law et al 2008; Matear & Lenton 2008; McNeil & Matear 2008 Impact of historical climate change on the Southern Ocean carbon cycle and implications for.
Marine Ecosystem Simulations in the Community Climate System Model
Climate feedback on the marine carbon cycle in CarboOcean Earth System Models J. Segschneider 1, E. Maier-Reimer 1 L. Bopp 2, J. Orr 2 1 Max-Planck-Institute.
Doney, 2006 Nature 444: Behrenfeld et al., 2006 Nature 444: The changing ocean – Labrador Sea Ecosystem perspective.
Ralph Keeling Scripps Institution of Oceanography Global oceanic and land carbon sinks from the Scripps flask sampling networks.
WP 11 - Biogeochemical Impacts - Kick-off meeting Nice 10 – 13/06/2008.
Primary production and the carbonate system in the Mediterranean Sea
Ocean Biological Modeling and Assimilation of Ocean Color Data Watson Gregg NASA/GSFC/Global Modeling and Assimilation Office Assimilation Objectives:
Biogeochemical Controls and Feedbacks on the Ocean Primary Production
ASSESSING BIODIVERSITY OF PHYTOPLANKTON COMMUNITIES FROM OPTICAL REMOTE SENSING Julia Uitz, Dariusz Stramski, and Rick A. Reynolds Scripps Institution.
Lecture 10: Ocean Carbonate Chemistry: Ocean Distributions
Surface Ocean pCO 2 and Air-Sea CO 2 -exchange in Coupled Models Birgit Schneider 1*, Laurent Bopp 1, Patricia Cadule 1, Thomas Frölicher 2, Marion Gehlen.
Impact of climate change on the global oceanic sink of CO 2 Corinne Le Quéré, University of East Anglia and British Antarctic Survey.
Modelling the effect of increasing pCO 2 on pelagic aragonite production and dissolution 1. Laboratoire des Sciences du Climat et de l'Environnement (LSCE),
Nitrous Oxide Focus Group Nitrous Oxide Focus Group launch event Friday February 22 nd, 2008 Dr Jan Kaiser Dr Parvadha Suntharalingam The stratospheric.
Modelling some Southern Ocean biogeochemical paradox P. Monfray (IPSL, Paris) Acknowledgments: L.Bopp, O.Aumont, C.Le Quéré & J.Orr Prepared for JGOFS-SOSG,
Food web and microbial loop Eutrophic vs. Oligotrophic food webs
Competition for nutrients Major phytoplankton groups Light
Critical and Compensation Depths (refer to handouts from 9/11/17)
Food web and microbial loop Eutrophic vs. Oligotrophic food webs
Critical and Compensation Depths Spring bloom and seasonal cycle
On Friday, Sep. 20 there is NO class/recitation.
Presentation transcript:

Ecosystem composition and CO 2 flux variability Corinne Le Quéré Max-Planck-Institut für Biogeochemie, Jena, Germany now at University of East Anglia/British Antarctic Survey with : Erik T. Buitenhuis and Olivier Aumont

Fossil fuel emissions Atmospheric increase Land sink Ocean sink CO 2 budget (PgC/y)

% 54% 15% (42%) 31% Fossil fuel emissions Atmospheric increase Land sink Ocean sink CO 2 budget (PgC/y)

Sabine et al., 2004 Anthropogenic C 60S60N depth (m) 0 55 umol/kg DOWN

Sabine et al., 2004; Key et al., 2004; CDIAC Total C Anthropogenic C UP DOWN 60S60N depth (m) 60S60N umol/kg

Sabine et al., 2004; Key et al., 2004; CDIAC Total C Anthropogenic C UP DOWN 60S60N depth (m) 60S60N umol/kg

oceanic carbon cycle Silicifi ers N 2 fixers DMS producer s Calcifiers Nano phytoplankt on Fe NO 3 SiSi CaCO 3 DM S PO4PO4 NH 4 DOM biological activity physical transport CO 2 CO 2 + H 2 O + CO HCO - 3 chemical reactions 90

(slide from J. Sarmiento)

winter mixed layer depth biological export production UP DOWN Schlitzer 2001; World Ocean Atlas 2001

Silicifi ers N 2 fixers DMS producer s Calcifiers Nano phytoplankt on Fe NO 3 SiSi CaCO 3 DM S PO4PO4 NH 4 DOM biological activity physical transport CO 2 + H 2 O + CO HCO - 3 chemical reactions UP DOWN

pico nano micro nano/micro meso macro Photosynth. Bacteria, N2-fixers Calcifiers, DMS-producers, autothr. dinoflagellates diatoms Ciliates, heterotr. flagellates Copepods, euphausids Salps, pteropods bacteria phyto- plankton zoo- plankton ecosystem composition

bacteria phyto- plankton zoo- plankton Export 11 PgC/y Respiration 34 PgC/y Primary Production 45 PgC/y

NPZD model Phyto PO 4 DOCZoo POC export CO 2 flux

Geider et al., 1997

Aumont et al., 2003 PISCES model (NNNPPZZDDD) CO 2 flux big

can we constrain complex ecosystem models?

yes

Ocean Physical Model: OPA General Circulation model (Madec et al. 2001) NCEP daily forcing o x2 o resolution 10 vertical levels in top 100 m (30 total) Thermodynamic Sea Ice model (Louvain La Neuve, Fichefet et al.) Nutrients restored under the Mixed layer (50<mld<100)

Buitenhuis et al., in prep.; Hirst and Kiorboe 2002; Ikeda 2001; Hirst and Bunker 2003 chl T growth T T mortality growth respiration Meso zooplankton rates (d -1 ) PISCES-T model

can we evaluate complex ecosystem models?

yes

PISCES PISCES-T Observations (SeaWiFS) Surface chla (mgChl/m 3 )

PISCES PISCES-T from observations (Schlitzer 2001) export of C (mol/m 2 /y)

PISCES PISCES-T Observations (WOA, FSU, CPR) Meso-zooplankton (uM)

PISCES Interannual chla variability (mgChl/m3) PISCES-T Observations (SeaWiFS) 0.1

PISCES Interannual chla variability (percent) PISCES-T Observations (SeaWiFS)

what do complex ecosystem models bring?

freedom

NPZD DGOM Interannual chla variability (mgChl/m3) PISCES-T Observations (SeaWiFS) Calcifiers PO 4 Fe PO 4 DOCZoo POC export

Buitenhuis et al., in prep. Dynamic Green Ocean Model (NNNPPPZZDDD) CO 2 flux Calcifiers PO 4 Fe big

NPZD DGOM Surface chla (mgChl/m3) PISCES-T Observations (SeaWiFS)

NPZD DGOM Interannual chla variability (mgChl/m3) PISCES-T Observations (SeaWiFS)

NPZD DGOM Interannual chla variability (percent) PISCES-T Observations (SeaWiFS)

NPZD DGOM Surface chla (mgChl/m3) PISCES-T Observations (SeaWiFS) mean Interannual standard deviation

Log (meso-zoo/chl) Log (chl) NPZD PISCES-T Observations DGOM

can complex ecosystem models help our understanding?

can complex ecosystem models bring new information?

does it matter for CO 2 fluxes?

CO 2 sink (PgC/y) Export (PgC/y)

oceanic carbon cycle Silicifi ers N 2 fixers DMS producer s Calcifiers Nano phytoplankt on Fe NO 3 SiSi CaCO 3 DM S PO4PO4 NH 4 DOM biological activity physical transport CO 2 CO 2 + H 2 O + CO HCO - 3 chemical reactions 90

oceanic carbon cycle Silicifi ers N 2 fixers DMS producer s Calcifiers Nano phytoplankt on Fe NO 3 SiSi CaCO 3 DM S PO4PO4 NH 4 DOM biological activity physical transport CO 2 CO 2 + H 2 O + CO HCO - 3 chemical reactions 901.8

oceanic carbon cycle Silicifi ers N 2 fixers DMS producer s Calcifiers Nano phytoplankt on Fe NO 3 SiSi CaCO 3 DM S PO4PO4 NH 4 DOM biological activity physical transport CO 2 CO 2 + H 2 O + CO HCO - 3 chemical reactions – 0.8

% 54% 15% (42%) 31% Fossil fuel emissions Atmospheric increase Land sink Ocean sink CO 2 budget (PgC/y)

conclusions simple ecosystem models are too tightly linked to ocean physics but easy to use complex ecosystem models are difficult to parameterize but add degrees of freedom both are needed

related posters Thursday: Leticia Cotrim da Cunha, Impact of river sources of P, Si and Fe on coastal biogeochemistry Friday: Manfredi Manizza, Bio-optical impact of phytoplankton on ocean physics and air-sea fluxes

Standard deviation in winter MLD Observations (WOA 2001) OPA model

PISCES PISCES-T observations (WOA, FSU, CPR) Log (meso-zoo/chl) Log (chl)

240, 1185, total C latitude 60S60N depth (m) umol/kg 500 winter mixed layer depth

CO 2 variability (Pg C/y) MIT model Hamburg model OPA model (Peylin, Bousquet, Le Quéré et al., submitted)

northern sub-tropics (Peylin, Bousquet, Le Quéré et al., submitted) CO 2 variability (mol/m 2 /y) MIT model OPA model observations