Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
1 S. Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia S. Charfi-Kaddour LPMC, Faculté des Sciences de Tunis, Tunisia M. Héritier.
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
SDW Induced Charge Stripe Structure in FeTe
Pairing glue antiferromagnetism, polaron pseudogap High-Tc.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Microscopic structure and properties of superconductivity on the density wave background P. D. Grigoriev L. D. Landau Institute for Theoretical Physics,
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Size effect in the vortex-matter phase transition in Bi 2 Sr 2 CaCuO 8+  ? B. Kalisky, A. Shaulov and Y. Yeshurun Bar-Ilan University Israel T. Tamegai.
Emily Dunkel (Harvard) Joel Moore (Berkeley) Daniel Podolsky (Berkeley) Subir Sachdev (Harvard) Ashvin Vishwanath (Berkeley) Philipp Werner (ETH) Matthias.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
ECRYS-2008, 27 August 2008 Charge ordering in (EDT-TTFCONMe 2 )Br and o-(Me 2 TTF)Br P. Auban-Senzier, C.Pasquier Laboratoire de Physique des Solides,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Transport of heat and charge at a z=2 Quantum Critical Point: Violation of Wiedemann-Franz Law and other non-fermi-liquid properties. A.Vishwanath UC Berkeley.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Fluctuation conductivity of thin films and nanowires near a parallel-
Transverse Transport / the Hall and Nernst Effects Usadel equation for fluctuation corrections Alexander Finkel‘stein Fluctuation conductivity in disordered.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Two Particle Response in Cluster Dynamical Mean Field Theory Rosemary F. Wyse, Aspen Center for Physics, PHY/DMR Dynamical Mean Field Theory is.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Interplay of Magnetic and Superconducting Proximity effect in F/S hybrid structures Thierry Champel Collaborators: Tomas Löfwander Matthias Eschrig Institut.
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Complexity in Transition-Metal Oxides and Related Compounds A. Moreo and E. Dagotto Univ. of Tennessee, Knoxville (on leave from FSU, Tallahassee) NSF-DMR
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
Superconductivity Introduction Disorder & superconductivity : milestones BCS theory Anderson localization Abrikosov, Gorkov Anderson theorem
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
R OLE OF D ISORDER IN S UPERCONDUCTING T RANSITION Sudhansu S. Mandal IACS, Kolkata HRI 1.
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
Sangita Bose, Bombay Antonio Bianconi, Rome Welcome !!! A. Garcia-Garcia, Cambridge.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
ARPES studies of unconventional
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Zlatko Tesanovic, Johns Hopkins University o Strongly correlated.
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
1.Introduction 2.Vortex Nernst effect 3.Enhanced Diamagnetism 4.Fragile London rigidity T>Tc 5.Low-temp. Quantum Vortex Liquid State Vorticity and the.
Chapter 7 in the textbook Introduction and Survey Current density:
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Superconductivity Basics
Giant Superconducting Proximity Effect in Composite Systems Chun Chen and Yan Chen Dept. of Physics and Lab of Advanced Materials, Fudan University,
Superconductivity in Systems with Diluted Interactions
Spontaneous inhomogeneity in disordered superconducting films
Where are the superconductors?
Analysis of proximity effects in S/N/F and F/S/F junctions
FSU Physics Department
Pressure-induced Superconductivity in CaFe2As2 -JPCM 20, (2008)
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Ginzburg-Landau theory
Presentation transcript:

Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC, Tunisia) STM image, BaFe 1.8 Co 0.2 As 2,J. Hoffman 2010 Superconducting fluctuations as origin of enhanced upper critical fields and Nernst effect in layered superconductors

Forget about swimming for a few minutes !!!

Motivation Role of superconducting fluctuations on Hc 2 and Nernst coefficient in organic superconductor (TMTSF) 2 PF 6 Roadmap Layered inhomogeneous superconductors + Superconducting fluctuations (Time dependent Ginzburg-Landau theory) Experimental facts Inhomogeneous superconductivity Superconducting fluctuations Enhancement upper critical fields ( layered organic superconductors) Giant Nernst effect in layered superconductors (organics, HTc, films…) Inhomogeneous superconductivit y

bar Inhomogeneous superconductivity How to obtain it? S. Lefebvre et al. (2000) Chemical substitution Yoneyama et al. (2004).  -(ET) 2 N(CN) 2 Cl C. Pasquier et al. (2007) Hydrostatic pressure N. Joo, Ph.D thesis (2006) SDW/SC SDW Metal Cooling rate (K/mn)

5 C. Pasquier et al. (2007) Inhomogeneous superconductivity How to obtain it? Hydrostatic pressure (TMTSF) 2 PF 6

Knebel et al. (2005). Heavy fermions Pure AF phase Coexistence of AF and SC domains Pure SC phase Inhomogeneous superconductivity Universal feature?

Pnictides Drew et al. (2008). Inhomogeneous superconductivity Universal feature? SmFeAsO 1-x F x

Mixture of insulating and SC phases SC domains ~ 3 nm STM images Lang et al. Nature (2002). Underdoped Bi-2212 Overdoped Bi-2212 Inhomogeneous superconductivity Universal feature? Cuprates

Rullier-Albenque, et al, EPL 2008 Disorder Increase of the regime of superconducting fluctuations Inhomogeneous superconductivity Universal feature? Cuprates

metal 10 resistivity temperature TcTc Metallic resistivity excess of conductivity Supraconducting regions (Metastable Cooper pairs) resistivity temperatureTcTc Metallic resistivity SC fluctuations appear in the metallic state before the SC transition Inhomogeneous superconductivity Superconducting fluctuations

11 Tc disorder Experiments Abrikosov &Gor’kov Law 0 TcTc T c0 : clean sample T c : dirty sample  : impurity scattering rate Abrikosov and Gor’kov Law: Disagreement Theory-Experiments Inhomogeneous superconductivity Existing theories (zero magnetic field)

12 Hypothesis: 1/ Layered superconductor + Josephson coupling (Puica and Lang 03’) 2/ Phase segregation: SC domains embedded in a non-SC matrix + Josephson couplings between SC domains J0J0 J1J1 J2J2 SC Josephson coupling Insulating Phase s SC d Inhomogeneous superconductivity A Model at zero magnetic field

Inhomogeneous superconductivity A Model at zero magnetic field: Results Effect of cooling rate in  - (ET)2Cu[N(CN)2]Br Present model Yoneyama et al. 04’ Abrikosov-Gor’kov law S.H, S. Kaddour, J-P. Pouget, submitted to JPCM Effect of cooling rate on (TMTSF) 2 ClO 4

Inhomogeneous superconductivity Inhomogeneous superconductivity and magnetic field ?

Inhomogeneous superconductivity Upper critical fields H c2 largely exceeds the Pauli limit H p ~2.5 T in q1D organic superconductors Yonezawa et al Lee et al Motivation Symmetry SC gap is Singlet (FFLO)? Triplet?

Inhomogeneous superconductivity Upper critical fields Non saturating behavior of H//a (triplet SC FFLO)? Upturn curvature H // a ? Role of the phase segregation? Superconducting fluctuations? Lee et al Motivation Pasquier et al. 2007

Superconducting fluctuations: Nernst effect: probe x y z V Transverse voltage E y generated by thermal gradient B B Peltier coefficient  xy = /E y

Superconducting fluctuations: Nernst effect: as a good probe Y. Wang et al. (2001) A. Pourretet al. Nature (2006) Cyr-Choinière et al. Nature (2009) Giant Nernst effect in fluctuating superconductors

Superconducting fluctuations: Nernst effect: existing theories Enhancement of the Nernst effect due to superconducting fluctuations or stripe order

Inhomogeneous superconductivity Upper critical fields Model SDW C. Pasquier et al. (2007) d SC Non SC H // a J SC Lee et al. JPSJ (2006)

Gauge Inhomogeneous superconductivity Upper critical fields Model Hypothesis: 1/ Superconductor with slab structure + Josephson coupling 2/ Time dependent Ginzburg-Landau Theory (Ullah and Dorsey 91’ and Puica and Lang 03’ for HTc) Nernst Geometry SC NSC H // a T EyEy Peltier coefficient  zy = /E y 

Method: Time Dependent Ginzburg-Landau theory Langevin forces: Superconducting fluctuations Time Dependent Ginzburg-Landau equation Inhomogeneous superconductivity The Model Ullah and Dorsey1991, Puica and Lang 2003

Superconducting transition temperature Inhomogeneous superconductivity The Model ã = 0 at T c Nc=lB2/02Nc=lB2/02

Inhomogeneous superconductivity The Model Nernst coefficient (Self consistent calculations) Peltier coefficient  zy = /E y

Inhomogeneous superconductivity Results (H = 0 T) SDW Quasi-1D organic superconductor : (TMTSF) 2 PF 6 C. Pasquier et al. (2007) SC NSC d Experiments pressure

Inhomogeneous superconductivity Results (H c2 ) Quasi-1D organic superconductor : (TMTSF) 2 PF 6 Lee et al. (1997) SC NSC d H // a Experiments Superconducting fluctuations increase Enhanced H c2 Present work

Inhomogeneous superconductivity Results (H c2 ) Quasi-1D organic superconductor : (TMTSF) 2 PF 6 SC NSC d H // a Experiments Upturn at N c = 0 ( N c = l B 2 /  0 2 ) Lee et al. (1997) Low field high field Present work

Inhomogeneous superconductivity Results: Nernst effect (TMTSF) 2 PF 6 Large Nernst effect at T > T c Nernst effect enhanced by Superconducting fluctuation (reducing d/  0 ) (factor 1000) Nernst ? SC fluctuations increase

Inhomogeneous superconductivity Results: Nernst effect (TMTSF) 2 PF 6 Nernst ? SC fluctuations increase Nernst effect is enhanced by approaching T c Nernst effect enhanced by Superconducting fluctuations (reducing d/  0 )

Inhomogeneous superconductivity Results: Nernst effect (TMTSF) 2 PF 6 SC NSC d H // a Nernst effect is reduced by increasing H Strong decrease as  0 > l B H 1/2 Low field High field

Inhomogeneous superconductivity Results: Nernst effect (TMTSF) 2 PF 6 Nernst effect at H> H c2. Large effect for large SC fluctuations T c2 T c1

Inhomogeneous superconductivity Summary Model: layered superconductors with slab structure Time Dependent Ginzburg-Landau theory 2/ Giant Nernst effect due to SC fluctuations ( good probe) Nernst effect observed in disordered superconductors far form Tc and Hc2 1/ Upper critical fields are enhanced by superconducting fluctuations induced by the phase segregation

SC NSC d Inhomogeneous superconductivity What should be next: 1/ Nernst effect with TDGLT in stripe phase of HTC I. Martin and C. Panagopoulos / After Giamarchi talk’s (Tuesday) Dynamics of domains (Functional RG) (interpretation of Bianconi group’s results cuprates)

Acknowledgment Claude Pasquier (Orsay) S. Yonezawa (Kyoto) A. Varlamov (Rome) W. Lang (Wien)

Inhomogeneous superconductivity Upper critical fields Motivation Resistivity and specific-heat measurements of H c2 are very different: Resistivity: non saturating H c2 (triplet or FFLO) Thermodynamics: saturating H c2 (singlet) Non saturating H c2 signature of superconducting fluctuations ? (TMTSF) 2 ClO 4 Courtesy of Yonesawa

Superconducting fluctuations: Nernst effect: as a good probe Choi et al. PRL. (2005) Wu et al. PRB (2005)