Photon counting detectors for future space missions Ivan Prochazka, Josef Blazej Ulrich Schreiber * presented at 16 th International Workshop on Laser.

Slides:



Advertisements
Similar presentations
Liverpool Group presentation 22/07/2009
Advertisements

Production of Photon Triplets James Cockburn Introduction References MethodsResultsConclusion The method works by having down- conversion sources be pumped.
A photon-counting detector for exoplanet missions Don Figer 1, Joong Lee 1, Brandon Hanold 1, Brian Aull 2, Jim Gregory 2, Dan Schuette 2 1 Center for.
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
An Optical Receiver for Interplanetary Communications Jeremy Bailey.
Preliminary Results of Laser Ranging to Un-cooperative Targets at Shanghai SLR Station Yang FuMin, Zhang ZhongPing, Chen JuPing, Chen WanZhen, Wu ZhiBo,
The Preliminary Results of Laser Time Transfer (LTT) Experiment Yang Fumin(1), Huang Peicheng(1), Ivan Prochazka(2), Zhang Zhongping(1), Chen Wanzhen(1),
Time Transfert by Laser Link T2L2 On Jason 2 OCA –UMR Gemini Grasse – FRANCE E. Samain – Principal.
Ground Target kHz Laser Ranging with Submillimeter Precision Lukas Kral, Karel Hamal, Ivan Prochazka (1) Georg Kirchner, Franz Koidl (2) presented at kHz.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
1 Development of Any Frequency Fire Rate SLR Control System Cunbo FAN, Xue DONG, Xingwei HAN, You ZHAO Changchun Observatory, , China.
16 years of LAGEOS-2 Spin Data from launch to present Daniel Kucharski, Georg Kirchner, Franz Koidl Space Research Institute Austrian Academy of Sciences.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Bingxin Yang High resolution effective K September 22-23, 2004 High-Resolution Effective K Measurements Using Spontaneous.
TOR TanDEM-X 16th International Workshop on Laser Ranging, Poznan, October 2008 ILRS Support for TerraSAR-X and TanDEM-X - Status and Future Prospects.
Simple Technique for Suppression of Line Frequency Noise in IR Array Systems Bruce Atwood, Jerry A Mason, and Daniel Pappalardo The Ohio State University.
Progress in sub-picosecond event timing Ivan Prochazka*, Petr Panek presented at 16 th International Workshop on Laser Ranging Poznan, Poland, October.
Study of D-D Reaction at the Plasma Focus Device P. Kubes, J. Kravarik, D. Klir, K. Rezac, E. Litseva, M. Scholz, M. Paduch, K. Tomaszewski, I. Ivanova-Stanik,
Yu. Artyukh, V. Bespal’ko, E. Boole, V. Vedin Institute of Electronics and Computer Science Riga, LATVIA 16th International Workshop on Laser.
Overview of Scientific Imaging using CCD Arrays Jaal Ghandhi Mechanical Engineering Univ. of Wisconsin-Madison.
I. Prochazka 1, J. Kodet 1,2, J. Blazej 1 K.G. Kirchner 3, F. Koidl 3 Presented at Workshop on Laser solutions for Orbital Space Debris April 2015,Laboratoire.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Two vertical-cavity surface-emitting lasers (VCSEL’s) are used at Alice, as sources of the two encoded states. Both outputs are then attenuated to achieve.
Photon detection Visible or near-visible wavelengths
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
Progress of HERD Simulation Ming XU ( 徐明 ), IHEP HERD 2 nd Workshop, IHEP, Beijing 1.
Laser Ranging Technique for ASTROD I Mission
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
Experimental set-up Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE Multi-Channel MCP PMTs S.Korpar a,b, R.Dolenec.
Development of Multi-pixel photon counters(2) M.Taguchi, T.Nakaya, M.Yokoyama, S.Gomi(kyoto) T.Nakadaira, K.Yoshimura(KEK) for KEKDTP photon sensor group.
Salvatore Tudisco The new generation of SPAD Single Photon Avalanche Diodes arrays I Workshop on Photon Detection - Perugia 2007 LNS LNS.
Main tasks  2 kHz distance measurements to 60 satellites  Precision: 2.5 mm single shot;
System Operations Eastbourne, October 2005 Towards the 1-mm: -A realistic goal ? -A vision ? -A myth ? -???
Laser-Astrodynamics, Space Tests of Relativity, and Gravitational Wave Astronomy 3 rd International ASTROD Symposium – Beijing, China – July 2006 TIME.
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
Munich-Centre for Advanced Photonics A pixel detector system for laser-accelerated ion detection Sabine Reinhardt Fakultät für Physik, Ludwig-Maximilians-Universität.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
Ivan Procházka, Jan Kodet presented at : seminart ACES – ELT Meeting, Fundamental Station Wettzell, Technische Univ.Muenchen, Germany May 8, 2009 Czech.
Jan 2004 Chuck DiMarzio, Northeastern University b-1 ECEG287 Optical Detection Course Notes Part 3: Noise and Photon Detection Profs. Charles A.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
I.Prochazka, CTU Prg Dec 2010 Ivan Procházka, Josef Blažej, Jan Kodet presented at : ELT meeting CTU in Prague, December 8, 2010 Czech Technical University.
Design for Wide FOV Cherenkov telescope upgrading THE 2 nd WORKSHOP OF IHEP Shoushan Zhang Institute of High Energy Physics.
FIT (Fast Interaction Trigger) detector development for ALICE experiment at LHC (CREN) Institute for Nuclear Research (INR RAS) National Research Nuclear.
I.Prochazka et al,ACES IWG meeting Neuchatel June 2014 European Laser Timing work progress Ivan Procházka, Josef Blažej (1), Jan Kodet (1,2) K.Ulrich Schreiber.
I.Prochazka et al,ACES ELT meeting Spring 2014 European Laser Timing work progress Ivan Procházka, Josef Blažej (1), Jan Kodet (1,2) presented at T2L2.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
Ivan Procházka Josef Blažej, Jan Kodet presented at : ELT meeting CTU in Prague, December 8, 2010 Czech Technical University in Prague, Czech Republic.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
1 Mid term – Laser Swarm Optical Receiving Payload Single-Photon Detection -Photonmultiplier tube -Single Photon Avalanche Diode(SPAD) Wavelength Estimation.
Ivan Procházka presented at : seminart Institute of Astronomical and Physical Geodesy, Technische Univ.Muenchen, Germany October 27, 2008 Czech Technical.
I. Prochazka 1, J. Kodet 1,2, J. Blazej 1 K.G. Kirchner 3, F. Koidl 3 Presented at 2015 ILRS Technical Workshop, Matera, Italy, October 26 – 30,
ELT delays absolute calibration Ivan Procházka (1), Josef Blazej (1), Anja Schlicht (2) Prepared for ESA Webex meeting(s) March 2015 (1) Czech Technical.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
I.Prochazka, Tech.Univ.Munich, Germany.October 27, 2008 Gaining confidence – Breadboard demo, Prague n The entire Time transfer experiment may be carried.
Photo detector Circuitry and Hardware Relating to PARCS Rachelle Baker Mentor: Alex Cronin Department of Physics University of Arizona.
MAXI - Monitor of All-sky X-ray Image Performance of the engineering model of the MAXI/SSC Katayama H. a, Tomida H. a, Matsuoka M. a, Tsunemi H. a,b, Miyata.
I.Prochazka,et al, KOM ESOC, Darmstadt, April 2016 SPACE SITUATIONAL AWARENESS PROGRAMME P2-SST-VII EXPERT COORDINATION CENTRES (PHASE 1) Contribution.
SPIE Defense and Commercial Sensing 2016, Baltimore, Maryland, USA, Apr 21, 2016 Advanced active quenching circuits for single-photon avalanche photodiodes.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Fondazione Bruno Kessler Centre for Materials and Microsystems.
D. Renker, PSI G-APD Workshop GSI, PAUL SCHERRER INSTITUT Problems in the Development of Geiger- mode Avalanche Photodiodes Dieter Renker Paul Scherrer.
9530 T IMING C ONTROL U NIT Features TCU-1 Key Features 250ps timing resolution with < 50ps jitter 8 independent outputs with full individual programming.
Development of Multi-Pixel Photon Counters (1)
Performance of LYSO and CeBr3 crystals readout by SiPM
E. Ponce2-1, G. Garipov2, B. Khrenov2, P. Klimov2, H. Salazar1
CsI Compton Veto Detector for A low Mass WIMP Experiment
Free Electron Lasers (FEL’s)
High Power, Uncooled InGaAs Photodiodes with High Quantum Efficiency for 1.2 to 2.2 Micron Wavelength Coherent Lidars Shubhashish Datta and Abhay Joshi.
Metrological characterisation of single-photon avalanche diodes
Presentation transcript:

Photon counting detectors for future space missions Ivan Prochazka, Josef Blazej Ulrich Schreiber * presented at 16 th International Workshop on Laser Ranging Poznan, Poland, October 13-17, 2008 Czech Technical University in Prague, Prague, Czech Republic * Technical University, Munich, Germany

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Outline n Laser Time Transfer and one way ranging projects n Detector requirements n Detector version # 1low (ISS orbit) n # 2 high (GPS orbit) n # 3 Lunar orbit (and beyond) Laser Time Transfer

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Laser time transfer and one way ranging projects n Compass M1 Beidou by China laser time transfer GPS like orbit, 21 ooo km range since 2007 (see Yang et all..) n Atomic Clock Ensemble in Space ACES by Europe laser time transfer, frequency and epoch comparison Columbus-ISS orbit, ~ 400 km range difficult tracking, short passes, high dynamic range launch 2012 n One way laser ranging to Lunar orbiter, German Space Agency positioning, frequency and epoch comparison Lunar orbit, ~ 380 ooo km range launch 2012 (?)

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Detector Requirements sorted according to priority 1. Timing stability ~ 10 ps or higher / depends on mission 2. Background photon fluxoperational up to 3*10 12 phot./s 1 mm 2 3. ComplexityLOW (Keep it simple in space ! ) 4. Dynamic rangeup to 1 : 1000(mission dependent) 5. Lifetime in spaceno shielding, signal overload, > 5 yrs 6. Timing resolution< 100 ps rms 7. Detection efficiency> 0.1(S/N is independent of detector eff.) 8. Dark count rate< 1 MHz(high background anyway)

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Detector for LTT project, China n SPAD K14, 25 um diam., dual / redundancy / NO collecting optics, FoV ~30 o, 10 nm filter n Operated Volt above breakdown n Gated and not gated operation (2008) n Detection efficiency ~ 0.1 n Jitter< 100 ps n Stability~ 10 ps n Dark count rate 10 kHz / +20 o C n OPERATING CONDITIONS Signal~ 1 photon / shot Background fluxup to 300 M phot. / s (!) on SPAD input n = > Gating~ 30 ns before (!)

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Detector for LTT project, China Background photon flux tests Laser Attenuator ND => 1 photon / shot / SPAD 12 W bulb SPAD package SPAD active area The setup enables ps photon counting with background photon flux levels up to photons / s / mm 2 WARNING do not try the same using PMT

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Detector for LTT project, China Background photon flux tests # 2 LTT background n Gating 30 ns before results in comparison to not gated setup in : n Data yield increase 3 – 9 x n Bias reduction 900 ps => 10 ps n Timing jitter independent on flux Data yield Detection delay

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Detector for LTT project, China Background photon flux tests # 3 n The detector performance was tested in even higher background fluxes ph/s hitting SPAD active area n Gating 6 ns in advance (not realistic for field use) n Data yield > 1% at flux 5 * 10 9 photons / s / SPAD see photo n Timing resolution and detection delay does not change ~ 10 ps

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Detector for ACES project, ESA 2012 Atomic Clock Ensemble in Space n SPAD K14, 200 um, TE3 cooled+ stabilized NO collecting optics, FoV~120deg, 1 nm filter Attenuated ~ 10 4 x n Operated 5 Volts above breakdown, gated n Photon number estimate n Detection efficiency ~ 532 nm n Jitter< 30 ps n Stability~ 1 ps n Dark count rate 20 kHz / +20 o C n OPERATING CONDITIONS Signal1 – 1000 photon / shot Background fluxup to 100 M phot. / s (!) on SPAD input (daytime) Gate~ 100 ns before(daytime) ~ 10 us wide(nighttime)

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct n Detection delay night+/- 1 ps day+/- 4 ps n Detection jitter independent on background photon flux n Data yield corresponds to statistics night(10 us gate) > 0.9 day(0.1us gate) > / - 4 ps Detector for ACES project Detection delay versus background photon flux Single photons only

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Photon number Risetime difference [ps] Detector for ACES project Photon number estimate on SPAD n New SPAD electronics for avalanche processing n Two detector outputs - Timing - Risetime n Photon number estimated on the basis of risetime n ~ 8 x improvement to original Graz scheme n 20 ps timing is sufficient n The existing on-board timing device 2 nd chan used for energy monit.

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Detector for Lunar orbiter LEO, DLR n SPAD K14, 200 um, TE3 cooled+ stabilized NO collecting optics, 10 nm filter n Operated 3 Volts above breakdown, Gated n Detection efficiency ~ 532 nm n Jitter< 30 ps n Stability~ 1 ps n Dark count rate 20 kHz / +20 o C n OPERATING CONDITIONS n Signal1 photon / shot only n Background fluxup to 50 M phot. / s (!) on SPAD input n Gate~ 200 ns before

I.Prochazka,J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct Conclusion n Three photon counting detectors have been designed for laser time transfer missions ( LTT, ACES) and one way ranging mission (LEO) n Timing stability 10 to 1 ps half peak to peak and timing resolution 30 to 100 ps rms is achievable n All the detectors are capable to operate under extremely high background photon flux conditions, => photon counting with wide FoV (120 o ) realistic opt.band-pass filter n The dynamical range of 1 to 10 ooo photons / echo photon number estimate is available n Very simple & rugged design