The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.

Slides:



Advertisements
Similar presentations
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London December 2008.
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Yu. I. BARANOV and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Toward a global model of low-lying vibrational states of methyl cyanide, CH 3 CN: the v 4 = 1 state at 920 cm –1 and its interactions with nearby states.
Georg Wagner, Manfred Birk Remote Sensing Technology Institute (IMF) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Shepard A. Clough Clough Radiation.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
HIGH-RESOLUTION ANALYSIS OF VARIOUS PROPANE BANDS: MODELING OF TITAN'S INFRARED SPECTRUM J.-M. Flaud.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
A.Perrin: Ohio-State 62th Molecular Symposium, June 2007 New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in.
Agnés Perrin Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil C.Bray,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
An Analysis of the 3 band of HTO aided by the Partridge and Schwenke PES Modou Tine and Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Remote Sensing Technology Institute 1 HITRAN 2006 Conference, Cambridge MA, June 26th-28th 2006 Water Pressure Broadening: A Never-ending Story Georg Wagner,
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
Measurements of N 2 - and O 2 -pressure broadening and pressure-induced shifts for 16 O 12 C 32 S transitions in the 3 band M.A. Koshelev and M.Yu. Tretyakov.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
High-resolution spectroscopy of nitrous acid (HONO) and its deuterated species (DONO) in the far- and mid-IR spectral regions A. Dehayem-Kamadjeu, J. Orphal,
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Synchrotron-Based High Resolution Spectroscopy of N-Bearing PAHs Sébastien Gruet, Olivier Pirali, Manuel Goubet and P. Bréchignac ISMS /06/2014.
68th Ohio State University Symposium on Molecular Spectroscopy June 17–21, 2013 SF 6 THE FORBIDDEN BAND UNVEILED V. BOUDON, Laboratoire Interdisciplinaire.
61th Ohio State University Symposium on Molecular Spectroscopy June 19–23, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4 LINES IN THE.
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Molecular Spectroscopy Symposium June 2013 Modeling the Spectrum of the 2 2 and 4 States of Ammonia to Experimental Accuracy John C. Pearson.
64th Ohio State University Symposium on Molecular Spectroscopy June 22–26, 2009 THE HIGH RESOLUTION FAR- INFRARED SPECTRUM OF METHANE AT THE SOLEIL SYNCHROTRON.
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento.
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
CDSD (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications Sergei Tashkun and Valery Perevalov Laboratory.
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
68th Ohio State University Symposium on Molecular Spectroscopy June 17–21, 2013 Frequency Analysis of the 10 μm Region of the Ethylene Spectrum using the.
György Tarczay, Gábor Magyarfalvi
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
OSU International Symposium on Molecular Spectroscopy June 18 – 22, TF Infrared/Raman -- TF01, Tuesday, June 19, 2012.
Manfred Birk, Georg Wagner Remote Sensing Technology Institute (IMF) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Lorenzo Lodi, Jonathan Tennyson Department.
Molecular Spectroscopy Symposium June 2010 Can the Inversion-Vibration-Rotation Problem in the 4 and 2 2 States of NH 3 be solved to Experimental.
TEMPERATURE DEPENDENCES OF AIR-BROADENING AND SHIFT PARAMETERS IN THE ν 3 BAND OF OZONE M. A. H. SMITH NASA Langley Research Center, Hampton, VA
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
FTS Studies Of The Isotopologues Of CO 2 Toward Creating A Complete And Highly Accurate Reference Standard Ben Elliott, Keeyoon Sung, Charles Miller JPL,
ROTATION-VIBRATIONAL ANALYSIS OF THE BANDS OF FORMALDEHYDE FALLING IN THE 3900 TO 5300 CM -1 REGION W.J. LAFFERTY Optical Technology Division NIST Gaithersburg,
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Analysis of the rotation-torsion spectrum of CH 2 DOH within the e 0, e 1, and o 1 torsional levels L. H. Coudert, a John C. Pearson, b Shanshan Yu, b.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
> ISMS 2017 > Joep Loos • P2355: Experimental line list of water vapor > Experimental line list of water vapor absorption lines in the spectral.
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
High-Resolution Spectroscopy and Analysis of the n3/2n4 Dyad of CF4
NH3 measurements in the far-IR
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
d'Opale, F Dunkerque, France,
Line Strength Measurements in the n2 band of H218O
Holger S. P. Müller, J. C. Pearson, S. Brünken, S. Yu,
Presentation transcript:

The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire Interuniversitaire des Systèmes Atmosphériques, France b Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Methodik der Fernerkundung, Germany

Water facts In the Journal of Molecular Spectroscopy, 16 articles were published since June 2005 including: Water is one of the most studied molecules 15 experimental papers and 1 theoretical paper A theoretician has a lot of work to do just fitting these data

Eight first vibrational states The vibrational states involved Data base for the 2 band region

Overview The theoretical approach The line position analysis The data set Results The line strength analysis The spectroscopic parameters The new measurements Results Building a new data base for water

The theoretical approach The bending-rotation approach will be used. It accounts for the anomalous centrifugal distortion and for the Coriolis- and Fermi-type couplings. 1. J. Mol. Spec. 154, 427 (1992). 2. J. Mol. Spec. 165, 406 (1994). 3. J. Mol. Spec. 181, 246 (1997). 4. J. Mol. Spec. 195, 54 (1999). 5. Mol. Phys. 96, 941 (1999). 6. J. Mol. Spec. 206, 83 (2001). 7. J. Mol. Spec. 228, 471 (2004). 8. J. Atmos. Oceanic Opt. 16, 172 (2003). 9. J. Q. S. R. T. 96, 139 (2005). Radau Coordinates It has already been used in many investigations 1-7 and for the MIPAS 8 and HITRAN data bases.

Line position analysis: the data set Larger data set than in a previous investigation. 1 1 The eight first vibrational states of the water molecule: measurements and analysis, Coudert, Pirali, Vervloet, Lanquetin, and Camy-Peyret, J. Mol. Spec. 228, 471 (2004) data including: 2990 experimental energy levels FIR and IR transitions 341 microwave transitions Unitless Standard deviation is 1.4

Results for transitions involving the (000) & (010) states

Results for transitions involving the 1 st triad states

Results for transitions involving the 2 nd triad states 1. R. A. Toth, J.Q.S.R.T. 94, 51 (2005) [1] The present approach does not take into account interaction with (2v 2 0), (1v 2 1), (0v 2 2) states

Results for the microwave data 1. Matsushima, Odashima, Iwasaki, Tsunekawa, Takagi, J. Mol. Struct. 352/353, 371 (1995). 2. Matsushima, Tomatsu, Nagai, Moriwaki, Takagi, J. Mol. Spectrosc. 235, 194 (2006).

Portion of the O  C Table for (010) 1. Matsushima et al. (2006). 2. This work A Watson-type Hamiltonian cannot be used for water. The calculated line positions should be accurate enough to build a data base for water.

Line intensity analysis: the model

Toth, J.Q.S.R.T. 94, 51 (2005) 3 2, 1  2, 3  2, 3 2  2, 1    2, 3  2  transitions This work 2, 2 2  transitions The new measurements

Experimental Instrument: Bruker IFS 120 HR Sample cells: Short cell, White cell Wavenumber range cm -1 MOPD: cm Optical path evacuated Detector: Photoconductive MCT Temperature measurement: Calibrated Pt100 + Lakeshore temperature controller Pressure measurement: Thermostated, calibrated MKS Baratrons: 1, 10, 100, 1000, 5000 mb More details see presentation by Georg Wagner: „Water Pressure Broadening: A Never-ending Story“

Measurement conditions + Analysis Pure water + air-broadened measurements Advantage: no instrumental lineshape errors in air-broadened data, different opacities for same transition Linestrength by averaging (2-20 measurements/averaged line),  of averaging ca. 1.3 on average Ca lines with overall uncertainty <2% Air-broadened number densities scaled. Reason: Number density more accurate in pure water measurement Scaling factors differ <1% from 1!!

Quality assessment, 2, main isotopomer Fit of scalar factor and temperature of individual pure water measurement. Reference: new linestrength data Ideal: T=296K, factor=1 Agreement good!! Independent analysis of optical depths and Agreement good!!

Strong linestrength-dependent difference to Toth data (currently in Hitran 2004) Origin to be investigated

The available data All these data have not been fitted together

The two line strength analyses Analysis I: The previous data except the measurements carried out in this work. Analysis II: The previous data except Toth’s measurements for transitions involving the 2 and    2 bands.

Results for Analysis I 6159 data fitted. Std = 1.4

M  J  R  J  M  J Q(J) M  J P(J) AA

Results for Analysis II 5558 data fitted. Std = 1.3

Calculated with Hitran04

Can we improve Hitran 04 ? Using the results of Analysis II, a data base was built. This new data base was compared with Hitran 04.

Comparison for 2 band transitions Frequency diagram for S(new)  S(H04) in % of S(new) All Transitions

Comparison for 2 band transitions Frequency diagram for S(new)  S(H04) in % of S(new)  Ka  1 Transitions

Comparison for 2 band transitions Frequency diagram for S(new)  S(H04) in % of S(new)  Ka  1 Transitions

Future work