PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 18. The Laws of Thermodynamics Chapter 12.

Slides:



Advertisements
Similar presentations
Chapter 12: Laws of Thermo
Advertisements

Thermodynamics II The First Law of Thermodynamics
Derivation of thermodynamic equations
PV Diagrams THERMODYNAMICS.
Work and Heat in Thermodynamic Processes
Matter and Energy. Drill Answer the following: 1) List 3 types of energy: 2) List 2 types of work:
Ch15 Thermodynamics Zeroth Law of Thermodynamics
Kinetic Theory and Thermodynamics
The Laws of Thermodynamics Chapter 12. Principles of Thermodynamics Energy is conserved FIRST LAW OF THERMODYNAMICS Examples: Engines (Internal -> Mechanical)
Chapter 10 Thermodynamics
1 UCT PHY1025F: Heat and Properties of Matter Physics 1025F Heat & Properties of Matter Dr. Steve Peterson THERMODYNAMICS.
PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 19. First Law of Thermodynamics Work done by/on a gas Last Lecture.
Chapter 10: Thermodynamics
Reading Quiz (graded) Which of the following is NOT true of the work done on a gas as it goes from one point on a PV diagram to another? (a) It cannot.
The Laws of Thermodynamics
Chapter 12 The Laws of Thermodynamics. Work in Thermodynamic Processes Work is an important energy transfer mechanism in thermodynamic systems Work is.
The Laws of Thermodynamics Chapter 12. Principles of Thermodynamics  Energy is conserved oFIRST LAW OF THERMODYNAMICS oExamples: Engines (Internal ->
Fig The net work done by the system in the process aba is –500 J.
1. The average velocity is greatest: a) between A and B b) between B and C c) between A and C Quizzes from Scott Pratt’s Lectures.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lectures for University Physics, Twelfth Edition – Hugh D. Young.
Matter and Energy. Drill Answer the following: 1) List the 3 types of energy: 2) The air inside of a basketball left outside on a cold day cools and contracts.
Chapter Thermodynamics
The Laws of Thermodynamics
MHS Physics Department AP Unit II C 2 Laws of Thermodynamics Ref: Chapter 12.
Thermodynamics AP Physics 2.
Chapter 15. ThermodynamicsThermodynamics  The name we give to the study of processes in which energy is transferred as heat and as work  There are 4.
Topic 10 Sections 2 and 3.  Statement Number Assessment Statement Deduce an expression for the work involved in a volume change of a gas at constant.
THERMODYNAMICS CH 15.
Thermodynamics. Thermodynamic Process in which energy is transferred as heat and work.
Work and heat oWhen an object is heated and its volume is allowed to expand, then work is done by the object and the amount of work done depends generally.
17.4 State Variables State variables describe the state of a system
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
Chapter 15: Thermodynamics
The Laws of Thermodynamics
Thermodynamics Chapter 15. Figure 15-1 An ideal gas in a cylinder fitted with a movable piston.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter 10 Heat, Work, and Internal Energy Heat and work are energy.
Q19.1 A system can be taken from state a to state b along any of the three paths shown in the pV–diagram. If state b has greater internal energy than state.
Thermodynamics Chapter 12.
Laws of Thermodynamics Thermal Physics, Lecture 4.
Lecture Outline Chapter 12 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
The internal energy of a substance can be changed in different ways. Work can transfer energy to a substance and increase its internal energy.
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
Thermodynamics Physics H Mr. Padilla Thermodynamics The study of heat and its transformation into mechanical energy. Foundation – Conservation of energy.
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
IB Physics Topic 10 – Thermodynamic Processes Mr. Jean.
Deduce an expression for the work involved in a volume change of a gas at constant pressure State the first law of thermodynamics. 1 Students.
Chapter 13: Thermodynamics
Ch15 Thermodynamics Zeroth Law of Thermodynamics If two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with.
Heat & The First Law of Thermodynamics
Thermodynamics Chapter 10
Conservation. Work Expanded  Mechanical work involves a force acting through a distance.  Work can involve a change in internal energy. Temperature.
Thermodynamics Thermal Processes The 2 nd Law of Thermodynamics Entropy.
Thermodynamics Internal energy of a system can be increased either by adding energy to the system or by doing work on the system Remember internal energy.
Constant volume (isochoric) process No work is done by the gas: W = 0. The P-V diagram is a vertical line, going up if heat is added, and going down if.
Lesson 6 First Law of Thermodynamics Liceo Alfano I.
B2 Thermodynamics Ideal gas Law Review PV=nRT P = pressure in Pa V = volume in m3 n = # of moles T= temperature in Kelvin R = 8.31 J K -1 mol -1 m = mass.
Thermodynamics Thermodynamics is a branch of physics concerned with heat and temperature and their relation to energy and work.
Chapter 11 Thermodynamics Heat and Work and Internal Energy o Heat = Work and therefore can be converted back and forth o Work  heat if work.
The First Law of Thermodynamics Ideal Gas Processes
Work in Thermodynamic Processes
Dr. Owen Clarkin School of Mechanical & Manufacturing Engineering Summary of Energy Topics Chapter 1: Thermodynamics / Energy Introduction Chapter 2: Systems.
The Laws of Thermodynamics Enrolment No.: Noble Group of Institutions - Junagadh.
Lecture #20: Thermodynamics AP Physics B. Work done by a gas Suppose you had a piston filled with a specific amount of gas. As you add heat, the temperature.
Government Engineering College, Dahod Mechanical Engineering Department SUB- Engg. thermodynamics ( ) Topic: First law of thermodynamics Prepared.
Chapter 11 Super Review. 1. A two mole sample of a gas has a temperature of 1000 K and a volume of 6 m 3. What is the pressure?
Chapter 11 Thermodynamics Worksheet
First Law of Thermodynamics
Three cylinders Three identical cylinders are sealed with identical pistons that are free to slide up and down the cylinder without friction. Each cylinder.
First Law of Thermodynamics
AP Physics B, Thermodynamics The Laws of Thermodynamics
Presentation transcript:

PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 18

The Laws of Thermodynamics Chapter 12

Principles of Thermodynamics Energy is conserved FIRST LAW OF THERMODYNAMICS Examples: Engines (Heat -> Mechanical Energy) Friction (Mechanical Energy -> Heat) All processes must increase entropy SECOND LAW OF THERMODYNAMICS Entropy is measure of disorder Engines can not be 100% efficient

Adding heat Q can: Change temperature Change state of matter Can also change  U by doing work on the gas Work done on a gas Change of Internal Energy  U Work done on the gas

First Law of Thermodynamics Note: (Work done by the gas) = - (Work done on the gas) Conservation of Energy Can change internal energy  U by Adding heat to gas: Q Doing work on gas: Add heat => Increase Int. Energy & Gas does work

Example 12.1 A cylinder of radius 5 cm is kept at pressure with a piston of mass 75 kg. a) What is the pressure inside the cylinder? b) If the gas expands such that the cylinder rises 12.0 cm, what work was done by the gas? c) What amount of the work went into changing the gravitational PE of the piston? d) Where did the rest of the work go? 1.950x10 5 Pa J 88.3 J Compressing the outside air

Example 12.2a A massive copper piston traps an ideal gas as shown to the right. The piston is allowed to freely slide up and down and equilibrate with the outside air. The pressure inside the cylinder is _________ the pressure outside. a) Greater than b) Less than c) Equal to

Example 12.2b A massive copper piston traps an ideal gas as shown to the right. The piston is allowed to freely slide up and down and equilibrate with the outside air. The temperature inside the cylinder is __________ the temperature outside. a) Greater than b) Less than c) Equal to

Example 12.2c A massive copper piston traps an ideal gas as shown to the right. The piston is allowed to freely slide up and down and equilibrate with the outside air. If the gas is heated by a steady flame, and the piston rises to a new equilibrium position, the new pressure will be _________ than the previous pressure. a) Greater than b) Less than c) Equal to

Some Vocabulary Isobaric P = constant Isovolumetric V = constant W = 0 Isothermal T = constant  U = 0 (ideal gas) Adiabatic Q = 0 V V V V P P P P

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, isothermally compressing the gas to half its original volume (b) P b is _______ P a Outside Air: Room T, Atm. P Example 12.3a a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, isothermally compressing the gas to half its original volume (b) T b is ________ T a Outside Air: Room T, Atm. P Example 12.3b a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, isothermally compressing the gas to half its original volume (b) W ab is ________ 0 Outside Air: Room T, Atm. P Vocabulary: W ab is work done by gas between a and b Example 12.3c a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, isothermally compressing the gas to half its original volume (b) U b is ________ U a Outside Air: Room T, Atm. P Example 12.3d a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, isothermally compressing the gas to half its original volume (b) Q ab is ________ 0 Outside Air: Room T, Atm. P Vocabulary: Q ab is heat added to gas between a and b Example 12.3e a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, adiabatically compressing the gas to half its original volume (b) P b is _______ P a Outside Air: Room T, Atm. P Example 12.4a a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, adiabatically compressing the gas to half its original volume (b) W ab is ______ 0 Outside Air: Room T, Atm. P Example 12.4b a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, adiabatically compressing the gas to half its original volume (b) Q ab is _______ 0 Outside Air: Room T, Atm. P Example 12.4c a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, adiabatically compressing the gas to half its original volume (b) U b is _______ U a Outside Air: Room T, Atm. P Example 12.4d a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) Weight is slowly added to the piston, adiabatically compressing the gas to half its original volume (b) T b is _______ T a Outside Air: Room T, Atm. P Example 12.4e a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) The gas is cooled, isobarically compressing the gas to half its original volume (b) P b is _______ P a Outside Air: Room T, Atm. P Example 12.5a a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) The gas is cooled, isobarically compressing the gas to half its original volume (b) W ab is _______ 0 Outside Air: Room T, Atm. P Example 12.5b a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) The gas is cooled, isobarically compressing the gas to half its original volume (b) T b is _______ T a Outside Air: Room T, Atm. P Example 12.5c a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) The gas is cooled, isobarically compressing the gas to half its original volume (b) U b is _______ U a Outside Air: Room T, Atm. P Example 12.5d a) Greater than b) Less than c) Equal to

A massive piston traps an amount of Helium gas as shown. The piston freely slides up and down. The system initially equilibrates at room temperature (a) The gas is cooled, isobarically compressing the gas to half its original volume (b) Q ab is _______ 0 Outside Air: Room T, Atm. P Example 12.5e a) Greater than b) Less than c) Equal to

P-V Diagrams P V Path moves to right: W by the gas = Area under curve P V Path moves to left: W by the gas = - Area under curve (W on the gas = - W by the gas )

Work from closed cycles Consider cycle A -> B -> A W A->B = Area W B->A = - Area (work done by gas)

Work from closed cycles Consider cycle A -> B -> A W A->B->A = Area (work done by gas)

Work from closed cycles Reverse the cycle, make it counter clockwise W B->A = - Area W A->B = Area (work done by gas)

Work from closed cycles W A->B->A = - Area Reverse the cycle, make it counter clockwise (work done by gas)

Internal Energy in closed cycles in closed cycles

Example 12.6 a) What amount of work is performed by the gas in the cycle IAFI? b) How much heat was inserted into the gas in the cycle IAFI? c) What amount of work is performed by the gas in the cycle IBFI? W=3.04x10 5 J W = -3.04x10 5 J Q = 3.04x10 5 J V (m 3 )

Example 12.7 Consider a monotonic ideal gas. a) What work was done by the gas from A to B? b) What heat was added to the gas between A and B? c) What work was done by the gas from B to C? d) What heat was added to the gas beween B and C? e) What work was done by the gas from C to A? f) What heat was added to the gas from C to A? V (m 3 ) P (kPa) A B C 20,000 J 20, ,000 J -25,000 J 0 15,000 J

Example Continued Take solutions from last problem and find: a) Net work done by gas in the cycle b) Amount of heat added to gas W AB + W BC + W CA = 10,000 J Q AB + Q BC + Q CA = 10,000 J This does NOT mean that the engine is 100% efficient!

Example 12.8a Consider an ideal gas undergoing the trajectory through the PV diagram. In going from A to B to C, the work done BY the gas is _______ 0. P V A B a)> b)< c)= C

Example 12.8b In going from A to B to C, the change of the internal energy of the gas is _______ 0. P V A B a)> b)< c)= C

Example 12.8c In going from A to B to C, the amount of heat added to the gas is _______ 0. P V A B a)> b)< c)= C D

Example 12.8d In going from A to B to C to D to A, the work done BY the gas is _______ 0. P V A B a)> b)< c)= C D

Example 12.8e In going from A to B to C to D to A, the change of the internal energy of the gas is _______ 0. P V A B a)> b)< c)= C D

Example 12.8f In going from A to B to C to D to A, the heat added to the gas is _______ 0. P V A B a)> b)< c)= C D