BRIDGES Maria F. Parra November 3, 2001 FIU Revised June 2003

Slides:



Advertisements
Similar presentations
What is a Bridge? A Structure across an obstacle to allow safe passage.
Advertisements

Engineering Terms Engineers design all structures with enough strength to withstand the force and load that will be placed upon them. Generally loads are.
BRIDGES! July
Characteristics of Three Bridge Types
Engineering Terms Engineers design all structures with enough strength to withstand the force and load that will be placed upon them. Generally loads are.
TODAY ADD LEGO rubric to end of your lab write-up for LEGO NXT
BRIDGES February 7th 2009 Maria F. Parra
ENG-1010 Lecture 16 Bridge Design.
Bridge Engineering: Lessons from Rome to Tacoma
There are more than 500,000 bridges in the United States!
 The biggest difference is the distance they can cross in a single span.  A modern arch can safely span up to 800 or 1,000 feet.  While a suspension.
MEGA STRUCTURES BRIDGES
The Structure Behind Bridges
Types of Structures  Residential - Structures in which people live.  Ex. Single family houses, condominiums, and apartment complexes.  Industrial -
There are many types of bridges including:
Main Goals of this Activity
Critical Thinking in Engineering Process
Bridges.
Beam Bridge consists of a horizontal beam supported at each end by piers. The weight of the beam pushes straight down on the piers. The farther apart.
Bridges & Forces.
Bridging the Gap: Building Bridges 101, It Is Time to Get To Work
BRIDGE BASICS THERE ARE THREE MAIN TYPES OF BRIDGES: BEAM BRIDGE
BRIDGES Greenwood Lake Middle School TECHNOLOGY. History of Bridge DevelopmentHistory of Bridge Development How Bridges Work Basic Concepts Types of Bridges.
Lesson 5-2 Bridge Building Foundations of Technology Mr. Brooks.
BRIDGES Christopher Rego October 28, 2006 FIU Revised June 2003
A swinging cable and wooden plank bridge in a New Zealand rain forest.
Discover Engineering ENGR 096
Bridges Introduction to design.
 Balsa Wood Bridge 8 th. How Does a Bridge Stay Up?
BRIDGES Christopher Rego October 28, 2006 Revised June 2003 SECME – M-DCPS Division of Mathematics and Science Education FIU.
BRIDGES Beauty and Function.  The first bridges were nature-made: trees that fell across creeks or rivers.  The first man-made bridges were most likely.
Work Plan History of Bridge Development How Bridges Work
BRIDGES. History of Bridge Development How Bridges Work Basic Concepts Types of Bridges Concepts Associated with Bridge Engineering Truss Analysis Tips.
THE HISTORY OF BRIDGES TRANSPORTATION IN AMERICA.
Beam Bridge. Sidney Lanier Bridge Under Construction.
Structures What things do I need to find out in order to predict if what I design will stand up to the use I intend to put it through?
Bridges bridge, span a structure that allows people or vehicles to cross an obstacle such as a river or canal or railway etc.span physics, the physical.
BRIDGES. History of Bridge Development How Bridges Work Basic Concepts Types of Bridges Concepts Associated with Bridge Engineering Truss Analysis Tips.
Bridge Designs Bridges are often built over huge landmasses or bodies of water. Their design depends on their function and location. We will take you through.
Structural Technology Foundations of Technology Standard 20: Students will develop an understanding of and be able to select and use construction technologies.
Bridges.  A bridge provides passage over some sort of obstacle: a river, a valley, a road, a set of railroad tracks... Etc…  The type of bridge used.
Bridges and Loads Modified by Matthew Silbernagel.
Arch Bridges.
Types of Bridges Images Forces Acting on Bridges
BRIDGES.
By: Mohamed Ahmed, EIT Clark dietz, inc
Engineering Terms Bridge Unit.
Understanding Structural Engineering
BRIDGES Maria F. Parra November 3, 2001 FIU Revised June 2003
Design & Engineering CAMS South
Discover Engineering ENGR 096
BRIDGES.
Beam bridge Truss bridge Arch bridge Suspension bridge
BRIDGES February 7th 2009 Maria F. Parra
Bridge Engineering: Lessons from Rome to Tacoma
Bridge Construction Mr. Banks.
A brief study of bridges
Bridge Design and Construction
The Beam Bridge A horizontal beam is supported at each end by piers
BRIDGES SECME – M-DCPS Division of Mathematics and Science Education
BRIDGES Maria F. Parra November 3, 2001 FIU Revised June 2003
Q7. ____________________have short spans usually less than 250 feet.
Bridge Project Problem Definition: Design a Bridge to span a given distance while supporting a maximum load using a minimum materials.
Bridge Design Tyrus Charley 10/19/16 P7.
Engineering Technology Program
Engineering Terms Engineers design all structures with enough strength to withstand the force and load that will be placed upon them. Generally loads are.
BRIDGES Maria F. Parra November 3, 2001 FIU Revised June 2003
Bridge Project Problem Definition: Design a Bridge to span a given distance while supporting a maximum load using a minimum materials.
BRIDGES by Parveen Kumar.
BRIDGE PROJECT Hunter fuller Period 5.
Presentation transcript:

BRIDGES Maria F. Parra November 3, 2001 FIU Revised June 2003 SECME – M-DCPS Division of Mathematics and Science Education FIU

Work Plan History of Bridge Development How Bridges Work Basic Concepts Types of Bridges Concepts Associated with Bridge Engineering Truss Analysis Tips for Building Bridges Bridge Construction

Great Stone Bridge in China History of Bridge Development Natural Bridges 700 A.D. Asia Great Stone Bridge in China Clapper Bridge Tree trunk Stone Low Bridge Shallow Arch Roman Arch Bridge Strength of Materials Mathematical Theories Development of Metal The Arch Natural Cement 1300 A.D. Renaissance 100 B.C. Romans

History of Bridge Development 1800 A.D. 1900 A.D. 2000 A.D. Truss Bridges Prestressed Concrete Steel First Cast-Iron Bridge Coalbrookdale, England Mechanics of Design Suspension Bridges Britannia Tubular Bridge Use of Steel for the suspending cables Wrought Iron 1850 A.D. 1920 A.D.

How Bridges Work? Every passing vehicle shakes the bridge up and down, making waves that can travel at hundreds of kilometers per hour.  Luckily the bridge is designed to damp them out, just as it is designed to ignore the efforts of the wind to turn it into a giant harp.  A bridge is not a dead mass of metal and concrete: it has a life of its own, and understanding its movements is as important as understanding the static forces.

Basic Concepts Span - the distance between two bridge supports, whether they are columns, towers or the wall of a canyon. Force - any action that tends to maintain or alter the position of a structure Compression - a force which acts to compress or shorten the thing it is acting on. Tension - a force which acts to expand or lengthen the thing it is acting on. Compression Tension

Basic Concepts Beam - a rigid, usually horizontal, structural element Pier Pier - a vertical supporting structure, such as a pillar Cantilever - a projecting structure supported only at one end, like a shelf bracket or a diving board Load - weight distribution throughout a structure

Basic Concepts Truss - a rigid frame composed of short, straight pieces joined to form a series of triangles or other stable shapes Stable - (adj.) ability to resist collapse and deformation; stability (n.) characteristic of a structure that is able to carry a realistic load without collapsing or deforming significantly Deform - to change shape

Basic Concepts Buckling is what happens when the force of compression overcomes an object's ability to handle compression. A mode of failure characterized generally by an unstable lateral deflection due to compressive action on the structural element involved. Snapping is what happens when tension overcomes an object's ability to handle tension. To dissipate forces is to spread them out over a greater area, so that no one spot has to bear the brunt of the concentrated force. To transfer forces is to move the forces from an area of weakness to an area of strength, an area designed to handle the forces.

Types of Bridges Basic Types: Beam Bridge Arch Bridge Suspension Bridge The type of bridge used depends on various features of the obstacle. The main feature that controls the bridge type is the size of the obstacle. How far is it from one side to the other? This is a major factor in determining what type of bridge to use. The biggest difference between the three is the distances they can each cross in a single span.

Types of Bridges Beam Bridge Consists of a horizontal beam supported at each end by piers. The weight of the beam pushes straight down on the piers. The farther apart its piers, the weaker the beam becomes. This is why beam bridges rarely span more than 250 feet.

Types of Bridges Beam Bridge Forces When something pushes down on the beam, the beam bends. Its top edge is pushed together, and its bottom edge is pulled apart.

Types of Bridges Truss Bridge Forces Every bar in this cantilever bridge experiences either a pushing or pulling force. The bars rarely bend. This is why cantilever bridges can span farther than beam bridges

Types of Bridges Arch Bridges The arch has great natural strength. Thousands of years ago, Romans built arches out of stone. Today, most arch bridges are made of steel or concrete, and they can span up to 800 feet.

Types of Bridges Arch Bridges Forces The arch is squeezed together, and this squeezing force is carried outward along the curve to the supports at each end. The supports, called abutments, push back on the arch and prevent the ends of the arch from spreading apart.

Types of Bridges Suspension Bridges This kind of bridges can span 2,000 to 7,000 feet -- way farther than any other type of bridge! Most suspension bridges have a truss system beneath the roadway to resist bending and twisting.

Types of Bridges Suspension Bridges Forces In all suspension bridges, the roadway hangs from massive steel cables, which are draped over two towers and secured into solid concrete blocks, called anchorages, on both ends of the bridge. The cars push down on the roadway, but because the roadway is suspended, the cables transfer the load into compression in the two towers. The two towers support most of the bridge's weight.

Types of Bridges Cable-Stayed Bridge The cable-stayed bridge, like the suspension bridge, supports the roadway with massive steel cables, but in a different way. The cables run directly from the roadway up to a tower, forming a unique "A" shape. Cable-stayed bridges are becoming the most popular bridges for medium-length spans (between 500 and 3,000 feet).

Interactive Page Let’s try it: How do the following affect your structure? Forces Loads Materials Shapes Let’s try it: http://www.pbs.org/wgbh/buildingbig/lab/forces.html The bridge challenge at Croggy Rock: http://www.pbs.org/wgbh/buildingbig/bridge/index.htmlbridge/index.html

Congratulations!

Basic math and science concepts Bridge Engineering Basic math and science concepts Pythagorean Theorem a g b c c2=b2+a2 a+b+g=180

Basic math and science concepts Bridge Engineering Basic math and science concepts Fundamentals of Statics F R1 R2 x y SFx = 0 SFy = R1+R2-P = 0

Basic math and science concepts Bridge Engineering Basic math and science concepts Fundamentals of Mechanics of Materials Modulus of Elasticity (E): E= Stress Strain F/A DL/Lo = F E e s Lo Where: F = Longitudinal Force A = Cross-sectional Area DL = Elongation Lo = Original Length F

Basic math and science concepts Bridge Engineering Basic math and science concepts To design a bridge like you need to take into account the many forces acting on it : The pull of the earth on every part The ground pushing up the supports The resistance of the ground to the pull of the cables The weight of every vehicle Then there is the drag and lift produced by the wind The turbulence as the air rushes past the towers

Basic math and science concepts Bridge Engineering Basic math and science concepts Balsa Wood Information

Bridge Engineering Truss Analysis Structural Stability Formula Where: K = The unknown to be solved J = Number of Joints M = Number of Members R = 3 (number of sides of a triangle) K = 2J - R K Results Analysis: If M = K Stable Design If M < K Unstable Design If M > K Indeterminate Design

Bridge Engineering Truss Analysis Structural Stability Formula (Example) Joints J=9 Members M=15 K = 2 (9) – 3 = 15 15 = M = K then The design is stable

Bridge Engineering Truss Analysis http://www.jhu.edu/virtlab/bridge/truss.htm West Point Bridge Software: http://bridgecontest.usma.edu/

Tips for building a bridge 1. Commitment - Dedication and attention to details. Be sure you understand the event rules before designing your prototype. Draw your preliminary design ALL joints should have absolutely flush surfaces before applying glue. Glue is not a "gap filler", it dooms the structure! Structures are symmetric. Most competitions require these structures to be weighed. Up to 20% of the structure's mass may be from over gluing.

The Importance of Connections Stresses flow like water. Where members come together there are stress concentrations that can destroy your structure. Here is a connection detail of one of the spaghetti bridges.

Tacoma Narrows Failure