Results from M. Di Marco, P. Peiffer, S. Schönert Thanks to Davide Franco and Marik Barnabe Heider Gerda collaboration meeting, Tübingen 9th-11th.

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

Advanced GAmma Tracking Array
Stefano Pirro, IDEA Meeting –Milano November Status of the scintillating bolometer program Scintillating Bolometers Background rejection capabilities.
PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
High granularity to reduce the effect of the “prompt flash” radiation Polarization sensitivity Imaging capabilities for background suppression DESPEC (DEcay.
Activity for the Gerda-specific part Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton.
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
Summary TG-10 MC & Background
M. Di Marco, P. Peiffer, S. Schönert
GERDA: GERmanium Detector Array
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutron background measurement at LNGS: present status Measurement carried out in collaboration between LNGS ILIAS-JRA1 and ICARUS groups.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
GERmanium Detector Array – a Search for Neutrinoless Double Beta Decay X. Liu - MPI für Physik, München Symposium – symmetries and phases in the universe,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
Task Group 2 Iris Abt, Michael Altmann, Kevin Kroeninger, Bela Majorovits, Franz Stelzer, Xiang Liu 1.Detector Development 2.Suspension & Cabling 3.MC.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
Iwha Womans University 2005/04/22 Hyunsu Lee & Jungwon Kwak Current Limit of WIMP search with CsI(Tl) crystal in KIMS 이현수 *, 곽정원, 김상열, 김선기, 김승천,
Monte Carlo Studies on Possible Calibration Sources Kevin Kröninger, MPI für Physik GERDA Collaboration Meeting, DUBNA, 06/27 – 06/29/2005.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
Half Day IoP Meeting: Neutrinoless Double Beta Decay, University College London, Great Britain The GERDA Experiment at Gran Sasso Grzegorz Zuzel.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Ge Test-stands at MPI Munich Xiang Liu 1.General 2.Crystals, Test-stands & Results 3.Outlook.
MaGe framework for Monte Carlo simulations MaGe is a Geant4-based Monte Carlo simulation package dedicated to experiments searching for 0 2  decay of.
LArGe-MPIK progress report physics validation of MaGe comparison with LArGe-MPIK: (preliminary) results GERDA collaboration meeting Dubna, June 26 th -29.
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
Experiment [1] M. Di Marco, P. Peiffer, S. Schonert, LArGe: Background suppression using liquid argon scintillation for 0νββ - decay search with enriched.
E.Guschin (INR,Moscow) 3 May 2006Calorimeter commissioning meeting Status of PRS/SPD detector Cosmic test results Installation/tuning of monitoring system.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
M.Shirchenko, JINR KIAE detectors test & restoration 1. Restoration of the detectors 2. Characterization of KIAE detectors 3. Next steps and.
TG 11 overview / Material screening Hardy Simgen MPI für Kernphysik for Task Group 11.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
1 Performance and Physics with the CsI(Tl) Array at the Kuo-Sheng Reactor Neutrino Laboratory  Physics with CsI(Tl) detector  Period -2 configuration.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
A simulation study on DBD search with pilot setup AMoRE - SNU jilee.
Recent progress in ultra-low noise, ultra-low background detectors V. Marian, M.O. Lampert, B. Pirard, P. Quirin CANBERRA France (Lingolsheim) Workshop.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
ESS Detector Group Seminar Edoardo Rossi 14th August 2015
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
Report (2) on JPARC/MLF-12B025 Gd(n,  ) experiment TIT, Jan.13, 2014 For MLF-12B025 Collaboration (Okayama and JAEA): Outline 1.Motivation.
ICARUS T600: low energy electrons
Status of ULE-HPGe Experiment for WIMP Search in YangYang
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Overview of GERDA simulation activities with MaGe
Pulse-shape discrimination with Cs2HfCl6 crystal
Prompt Gamma Activation Analysis on 76Ge
The Heidelberg Dark Matter Search Experiment
Status of 100Mo based DBD experiment
Deep learning possibilities for GERDA
Very preliminary study of the random background for the BiPo detector (PhoSwich configuration) Work done by Jonathan Ferracci.
2nd International Workshop on Double Beta Decay
Pre-Test-stands at MPI Munich
Mo-92 EC/beta+ search with CaMoO4 crystal at Y2L
Status of Neutron flux Analysis in KIMS experiment
Davide Franco for the Borexino Collaboration Milano University & INFN
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
Presentation transcript:

Results from M. Di Marco, P. Peiffer, S. Schönert Thanks to Davide Franco and Marik Barnabe Heider Gerda collaboration meeting, Tübingen 9th-11th November 2005 goal: study and quantify background suppression with LAr scintillation

Outline Resolution of bare Ge in LAr Experimental Setup of –DAQ –Operational parameters –Background spectrum Characterization with various  -sources – 137 Cs, 60 Co, 226 Ra, 232 Th –bkgd suppression in RoI Outlook on Conclusions

Proof of feasibility: bare p-type detectors in LAr  No deterioration of energy-resolution for p-type detectors in LAr ! Resolution in LN2.3 keV Resolution in LAr2.3 keV Data taken at DSG in Mainz

Trigger on Ge-signal Record Ge-signal and LAr-signal simultaneously Shaping 3 µs Gate width = 6 µs No hardware veto PMT Ge-crystal ( ∅ 5.1 cm, h=3.5 cm) LAr in Dewar ( ∅ 29 cm) Continously flushed with gaseous Argon Filling and emptying Monitor filling level (with temperature sensors) Calibrate PMT (trough optical fibre with UV-LED) WLS and reflector (VM-2000) Internal source External source 5 cm lead + underground lab (15 mwe) Schematic system description System is designed to be air tight to prevent quenching of LAr scintillation by O 2 or H 2 O

Operational parameters Canberra p-type crystal (390 g) Running stable since several weeks Stability monitoring by: peak position resolution leakage current Not optimized for energy resolution: long signal cables FET outside system pickup of external noise Energy resolution OK: ~4.5 keV FWHM w/o PMT ~5 keV with PMT At 1,3 MeV 60 Co-line PMT threshold set at ~1 single photoelectron (spe) 1 spe ≈ 5 keV energy deposition in LAr sourceGe-rateLAr-rateRandom coinc. Back- ground 7 Hz2,1 kHz1,2 % 60 Co int. 600 Bq 17 Hz2,8 kHz1,68 % 226 Ra int. 1kBq 23 Hz3,2 kHz1,92 % Gain in background suppression is not compromised by signal loss due to random coincidences !

Background spectrum 40 K 40 counts/h 208 Tl 10 counts/h energy in Ge (MeV) Ge signal (no veto) Ge signal after veto: fraction of the signal which „survives“ the cut

Background spectrum baseline: 41% survival 40 K 40 counts/h 93% survival 208 Tl 10 counts/h 93% survival energy in Ge (MeV)

Calibration with different sources  137 Cs : single  line at 662 keV full energy peak : no suppression with LAr veto Compton continuum: suppressed by LAr veto

137 Cs real data simulations 662 keV 100% survival 662 keV 100% survival Compton continuum: 20% survival Compton continuum: 20% survival very well reproduced by MaGe : shape of energy spectrum peak efficiency peak/Compton ratio same thing for 60 Co (ext), 232 Th (int, ext), 226 Ra (int)  geometry + basic physics processes well understood

137 Cs for now, veto simulated as a sharp energy threshold with arbitrary value  suppression by LAr overestimated in more complex cases next: proper threshold for spe (Poisson statistics) calibration of LAr scintillation

Calibration with different sources  60 Co : two  lines (1.1 and 1.3 MeV) in cascade  external : high probability that only 1  reaches the crystal  acts as 2 single  lines  internal : if one  reaches the crystal, 2nd  will deposit its energy in LAr full energy peaks : no suppression with LAr veto full energy peak : suppressed by LAr veto Compton continuum: suppressed by LAr veto

60 Co (external) 30% shielding of the source not implemented in MaGe yet 100% ~20%

60 Co (internal) 12% 40% weak source : 208 Tl from bkgd is visible 100% survival summation peak: both  in crystal 100% survival 12%

Calibration with different sources  137 Cs : single  line at 662 keV  60 Co : two  lines (1.1 and 1.3 MeV) in cascade  full-E peak no suppression if external  full-E peak suppressed if internal  232 Th : dominated by 208 Tl  511 keV – 583 keV – 2.6 MeV : prompt cascade  860 keV – 2.6 MeV : prompt cascade  no suppression if external  suppressed if internal  226 Ra : dominated by 214 Bi  609 keV and keV : prompt cascade  suppressed if internal  MeV MeV : direct decay  no suppression Compton continuum: suppressed by LAr veto

232 Th (external) 33% 25% RoI 2.6 MeV 83% 208 Tl simulated 2.6 MeV 76% 583 keV : 70% 29% 18%19%

232 Th (internal) 208 Tl simulated  30% 9,5% 14% 9,5% RoI 26% (mc 15%) weak souce (400 Bq over 3cm)  contribution from 208 Tl bkgd in real data 4% 12% 4%

 92% 30% 226 Ra (internal) 214 Bi simulated 27% RoI  30% (mc 23%) 30% 28% 19% 13%

Summary of background suppression for LArGe-MPIK setup full energy peak : no suppression by LAr veto Compton continuum: suppressed by LAr veto full energy peak : suppressed by LAr veto No efficiency loss expected for 0 ßß-events Suppression factors limited by radius of the active volume. R = 10 cm  significant amount of  ‘s escape without depositing energy in LAr Source 137 Cs 60 Co (ext) 1.3 MeV 232 Th (ext.) 583 keV 2.6 MeV RoI 60 Co (int) 1.3 MeV 232 Th (int) 583 keV 2.6 MeV RoI 226 Ra (int) 609 keV 2,4 MeV RoI Compton continuum 20%~ 30%~ 25 – 33%12%9.5-14%19-27% full-E peak 100% ~ 100% 40%~ 30% 30% 100%

Outlook: Gran Sasso Bi-214 Tl-208 Examples: Background suppression for contaminations located in detector support 3.3·10 -3 survival survival: 10% LArGe suppression method and segmentation are orthogonal !  Suppression factors multiplicative Diameter = 90 cm. No significant escapes. Suppression limited by non-active materials.

Conclusions LAr does not deteriorate resolution of p- type crystals Experimental data shows that –LAr veto is a powerful method for background suppression –No relevant loss of 0 ßß signal Results will be improved in larger MaGe simulations reproduce well the data –Work in progress