Ballistic conductance of suspended nanowires: An ab initio description

Slides:



Advertisements
Similar presentations
Scanning tunnelling spectroscopy
Advertisements

Ab Initio Calculations of Three and Four Body Dynamics M. Tomaselli a,b Th. Kühl a, D. Ursescu a a Gesellschaft für Schwerionenforschung, D Darmstadt,Germany.
Deriving Insights from Computation: Molecular Electronics to Self-trapped Excitons Steven G. Louie Physics Department, UC Berkeley and MSD, LBNL Electron.
Quantum transport beyond the independent-electron approximation Rex Godby.
Quantum Monte Carlo Simulation of Vibrational Frequency Shifts in Pure and Doped Solid para-Hydrogen Lecheng Wang, Robert J. Le Roy and Pierre- Nicholas.
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
Stability and Symmetry Breaking in Metal Nanowires I: Toward a Theory of Metallic Nanocohesion Capri Spring School on Transport in Nanostructures, March.
1 Nonequilibrium Green’s Function Approach to Thermal Transport in Nanostructures Jian-Sheng Wang National University of Singapore.
Stability analysis of metallic nanowires: Interplay of Rayleigh and Peierls Instabilities Daniel Urban and Hermann Grabertcond-mat/ Jellium model:
Influence of gases on the formation of atomic gold wires By using a Mechanically Controlled Break Junction (MCBJ) at 4.2 K it is possible to form atomic.
SpiDME meeting, Nijmegen, May 2007 Stefano Sanvito and Nadjib Baadji Computational Spintronics Group School of Physics and CRANN, Trinity College.
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Advanced Semiconductor Physics ~ Dr. Jena University of Notre Dame Department of Electrical Engineering SIZE DEPENDENT TRANSPORT IN DOPED NANOWIRES Qin.
Shells and Supershells in Metal Nanowires NSCL Workshop on Nuclei and Mesoscopic Physics, October 23, 2004 Charles Stafford Research supported by NSF Grant.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Theory of vibrationally inelastic electron transport through molecular bridges Martin Čížek Charles University Prague Michael Thoss, Wolfgang Domcke Technical.
Theory of the Quantum Mirage*
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Stability and Symmetry Breaking in Metal Nanowires II: Linear Stability Analyses Capri Spring School on Transport in Nanostructures, March 29, 2007 Charles.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
Ballistic and quantum transports in carbon nanotubes.
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
Einstein A coefficients for vibrational-rotational transitions of NO
1 Concentration dependence of the Curie constant and parameters of the localized spins of the nickel impurities in crystals of HgSe T.E.Govorkova, V.I.Okulov,
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
New Jersey Institute of Technology Computational Design of Strongly Correlated Materials Sergej Savrasov Supported by NSF ITR (NJIT), (Rutgers)
Conductance of Single Molecular Junctions
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Institut für Theoretische Festkörperphysik (Universität Karlsruhe) and Universidad Autonoma de Madrid (Spain)
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Conduction and Transmittance in Molecular Devices A. Prociuk, Y. Chen, M. Shlomi, and B. D. Dunietz GF based Landauer Formalism 2,3 Computing lead GF 4,5.
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
Positive HBT/noise cross-correlations in superconducting hybrids: Role of disorder R. Melin, C. Benjamin and T. Martin, Phys. Rev. B 77, (2008)
Computational Solid State Physics 計算物性学特論 第10回 10. Transport properties II: Ballistic transport.
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.
Graphene-metal interface: an efficient spin and momentum filter
10 th RD 50 Workshop, Vilnius, Analysis of microinhomogeneity of irradiated Si by Hall and magnetoresistance effects J.Vaitkus, A.Mekys, J.Storasta.
Stability and magnetism of infinite atomic chains Jaime Ferrer.
Theory of the Fano Effect and Quantum Mirage STM Spectroscopy of Magnetic Adatoms on Metallic Surfaces.
Monte Carlo methods applied to magnetic nanoclusters L. Balogh, K. M. Lebecki, B. Lazarovits, L. Udvardi, L. Szunyogh, U. Nowak Uppsala, 8 February 2010.
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
Herringbone Colin Murphy Jan Atomic Packing
Nonequilibrium Green’s Function Method for Thermal Transport Jian-Sheng Wang.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Theoretical study of a cobalt nano-contact László Balogh 1 *, Krisztián Palotás 1, Bence Lazarovits 2, László Udvardi 1, László Szunyogh 1 1 Department.
STM Conference Talk: Dirk Sander
The monopole transition to the Hoyle state in 12C in electron scattering: Is there an a-condensate? * Maksym Chernykh Institut für Kernphysik, TU Darmstadt.
Objectives: Develop predictive atomistic models for CBRAM.
S.-C. Lee*, K.-R. Lee, and K.-H. Lee Computational Science Center
Conductance of nanosystems with interaction
Analysis of proximity effects in S/N/F and F/S/F junctions
Example Make x the subject of the formula
Ab-initio nuclear structure calculations with MBPT and BHF
Presentation transcript:

Ballistic conductance of suspended nanowires: An ab initio description M. Czerner1, A. Bagrets1, N. Papanikolaou2, V.S. Stepanyuk3 and I. Mertig1 1Martin-Luther-Universität Halle, Germany 2Institute of Material Science, National Center for Scientific Research „Demokritos“, Athens, Greece 3 Max-Planck-Institute Mikrostrukturphysik Halle, Germany ADMOL Dresden, 23.-27.02.2004

Relaxation and conductance Impurity scattering Content Motivation Method Parity oscillations Relaxation and conductance Impurity scattering Ballistic magnetoconductance Summary ADMOL Dresden, 23.-27.02.2004

H. Ohnishi, Yu. Kondo, K. Takayanagi, Nature 395, 780 (1998) Motivation Metallic Nanowires Conductance H. Ohnishi, Yu. Kondo, K. Takayanagi, Nature 395, 780 (1998) KKR-Workshop 2004 München, 13.-15.02.2004

KKR Green‘s function method Semi-infinite leads Suspended nanowire ADMOL Dresden, 23.-27.02.2004

Landauer theory with Green‘s functions Landauer formula 1 Sample 2 Conductance Matrix elements H.U. Baranger and A.D. Stone, Phys. Rev. B 40, 8169 (1989) ADMOL Dresden, 23.-27.02.2004

Conductance of Cu wires Local partial DOS at central Cu atom Cu fcc [100] Conductance histogram at T=4.2K for Cu, A. I. Yanson, PhD. Thesis, Leiden University, the Netherlands, 2001. G = 1.10 G0 ADMOL Dresden, 23.-27.02.2004

Conductance of Cu wires Local partial DOS at central Cu atom Conductance histogram at T=4.2K for Cu, A. I. Yanson, PhD. Thesis, Leiden University, the Netherlands, 2001. G = 2.59 G0 Cu fcc [100] ADMOL Dresden, 23.-27.02.2004

Parity oscillation in the conductance of Cu wires Experiment KKR calculation R.H.M. Smit et al., Phys. Rev. Lett. 91, 076805-1 (2003) M. Czerner, diploma thesis, MLU Halle (2003) ADMOL Dresden, 23.-27.02.2004

Even-odd parity effect in the density of states s-LDOS p-LDOS ADMOL Dresden, 23.-27.02.2004

Stress and conductance in a Cu wire Averaged stress Conductance Distance d (Å) a b c Average stress per Cu atom (ev/ų) V.S.Stepanyuk et al., Phys. Rev. B (2003) M. Czerner, diploma thesis, MLU Halle (2003) ADMOL Dresden, 23.-27.02.2004

Conductance through sp-atoms sp impurity (Z = 11 ... 16) ADMOL Dresden, 23.-27.02.2004

Conductance through sp-atoms sp impurity (Z = 11 ... 16) ADMOL Dresden, 23.-27.02.2004

Conductance through sp-atoms sp impurity (Z = 11 ... 16) ADMOL Dresden, 23.-27.02.2004

Conductance through 3d transition metal atoms 3d impurity (Z = 21 ... 30) ADMOL Dresden, 23.-27.02.2004

Conductance through 3d transition metal atoms 3d impurity (Z = 21 ... 30) ADMOL Dresden, 23.-27.02.2004

Conductance through 3d transition metal atoms 3d impurity (Z = 21 ... 30) ADMOL Dresden, 23.-27.02.2004

Conductance through 3d transition metal atoms 3d impurity (Z = 21 ... 30) ADMOL Dresden, 23.-27.02.2004

Conductance through 3d transition metal atoms ADMOL Dresden, 23.-27.02.2004

Conductance through 3d transition metal atoms ADMOL Dresden, 23.-27.02.2004

Conductance through 3d transition metal atoms ADMOL Dresden, 23.-27.02.2004

Conductance of Co wires DOS Conductance ADMOL Dresden, 23.-27.02.2004

Ballistic Magnetoconductance Parallel configuration (P) Antiparallel configuration (AP) MR =(gP – gAP)/gAP x 100% ADMOL Dresden, 23.-27.02.2004

Ballistic Magnetoconductance of Co wires MR = 38 % MR = 29 % ADMOL Dresden, 23.-27.02.2004

Conductance depends strongly on geometry of the junction Summary Conductance depends strongly on geometry of the junction II. Parity oscillations III. Relaxation enhances conductance III. Impurity scattering modulates conductance IV. Ballistic magnetoconductance is ~50 % ADMOL Dresden, 23.-27.02.2004