Initial conditons, equations of state and final state in hydrodynamics Hydro modelsHydro models IS, EoS, FOC and FSIS, EoS, FOC and FS ObservablesObservables.

Slides:



Advertisements
Similar presentations
M. Csanád at QM’04 Indication for deconfinement at RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to spectra.
Advertisements

M. Csanád, T. Csörg ő, M.I. Nagy Exact results in analytic hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy.
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Anisotropic Flow at RHIC Jiayun Chen (for Collaboration) Institute of Particle Physics, HZNU, Wuhan, , P.R.China Brookhaven National Lab, Upton,
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
Pion correlations in hydro-inspired models with resonances A. Kisiel 1, W. Florkowski 2,3, W. Broniowski 2,3, J. Pluta 1 (based on nucl-th/ , to.
XXXIII International Symposium on Multiparticle Dynamics, September 7, 2003 Kraków, Poland Manuel Calderón de la Barca Sánchez STAR Collaboration Review.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
WWND, San Diego1 Scaling Characteristics of Azimuthal Anisotropy at RHIC Michael Issah SUNY Stony Brook for the PHENIX Collaboration.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
S C O T T PRATPRAT MICHIGANMICHIGAN S T T E UNIVRSITYUNIVRSITY T H BTBT PUZZLE PUZZLE Z A N D E X T E N D I N G HYRODYNAMICS HYRODYNAMICS.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
Steffen A. RHIC #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The Protons Puzzle at RHIC - the demise of pQCD? Recombination.
Máté Csanád, Imre Májer Eötvös University Budapest WPCF 2011, Tokyo.
In collaboration with V. Shapoval, Iu.Karpenko Yu.M. Sinyukov, BITP, Kiev WPCF-2012 September 09 – FIAS Frankfurt.
KROMĚŘĺŽ, August 2005WPCF Evolution of observables in hydro- and kinetic models of A+A collisions Yu. Sinyukov, BITP, Kiev.
Dubna 10 March 2006Workshop EuroIons Matter evolution and soft physics in A+A collisions Yu. Sinyukov, BITP, Kiev.
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
The effects of viscosity on hydrodynamical evolution of QGP 苏中乾 大连理工大学 Dalian University of Technology.
Longitudinal de-correlation of anisotropic flow in Pb+Pb collisions Victor Roy ITP Goethe University Frankfurt In collaboration with L-G Pang, G-Y Qin,
S C O T T PRATTPRATT M I C H I G A N STATESTATE U N I V E R S I Y T S U N A M I THETHE B T PUZZLEPUZZLE ANDAND T H E R H I C.
Workshop for Particle Correlations and Femtoscopy 2011
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
July 21, 2011M.Š. EPS-HEP 2011, Grenoble11 Three-dimensional Kaon Source Extraction from STAR Experiment at RHIC Michal Šumbera NPI ASCR Prague (for the.
T. Zimányi'75, Budapest, 2007/7/2 1 T. Csörgő, M. Csanád and Y. Hama MTA KFKI RMKI, Budapest, Hungary ELTE University, Budapest, Hungary USP,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
T. KSU, USA, 2009/01/23 1 Csörgő, Tamás MTA KFKI RMKI, Budapest, Hungary High temperature superfluidity in Introduction: “RHIC Serves.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
Zimányi Winter School, 2013/12/05 Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I.
Hadron emission source functions measured by PHENIX Workshop on Particle Correlations and Fluctuations The University of Tokyo, Hongo, Japan, September.
2+1 Relativistic hydrodynamics for heavy-ion collisions Mikołaj Chojnacki IFJ PAN NZ41.
Sergey Panitkin Femtoscopy at RHIC Sergey Panitkin Brookhaven National Lab.
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions.
Steffen A. BassDynamics of Hadronization #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The baryon puzzle at RHIC Recombination + Fragmentation.
Kang Seog Lee Chonnam National University, Korea Dynamical Recombination model of QGP Introduction – recombination model Dynamic recomination calculation.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Sergey Panitkin Current Status of the RHIC HBT Puzzle Sergey Panitkin Brookhaven National Lab La Thuile, March 18, 2005.
Partial thermalization, a key ingredient of the HBT Puzzle Clément Gombeaud CEA/Saclay-CNRS Quark-Matter 09, April 09.
M. Csanád, T. Csörg ő, M.I. Nagy New analytic results in hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE.
T. WPCF’06, Sao Paulo, 2006/9/10 1 T. Csörgő, M. Csanád and M. Nagy MTA KFKI RMKI, Budapest, Hungary Anomalous diffusion of pions at RHIC Introduction:
Csanád Máté 1 Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics –
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Inha Nuclear Physics Group Quantum Opacity and Refractivity in HBT Puzzle Jin-Hee Yoon Dept. of Physics, Inha University, Korea John G. Cramer,
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
T. Csörgő 1,2 for the PHENIX Collaboration Femtoscopic results in Au+Au & p+p from PHENIX at RHIC 1 MTA KFKI RMKI, Budapest,
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
HBT results from a rescattering model Tom Humanic Ohio State University WPCF 2005 August 17, 2005.
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
Adam Kisiel – CERN Hirschegg 2010 – 19 Jan Femtoscopy in relativistic heavy-ion collisions as a probe of system collectivity Adam Kisiel CERN.
New solutions of fireball hydrodynamics with shear and bulk viscosity
Femtoscopic signatures of collective behavior as a probe of the thermal nature of relativistic heavy ion collisions Thomas J. Humanic, Ohio State University.
Non-identical particle femtoscopy in hydrodynamics with statistical hadronization Adam Kisiel, CERN.
Presentation transcript:

Initial conditons, equations of state and final state in hydrodynamics Hydro modelsHydro models IS, EoS, FOC and FSIS, EoS, FOC and FS ObservablesObservables Csanád Máté Eötvös University Department of Atomic Physics

11 September, 2008M. Csanád, WPCF08 Krakow2 Little vocabulary of hydrodynamics Exact solutionExact solution –Solution of hydro equations analytically, without approximation Parametric solutionParametric solution –Exact solution, that has fit parameters Hydro inspired parameterizationHydro inspired parameterization –Distribution determined at freeze-out only, their time dependence is not considered Numerical solutionNumerical solution –Solution of hydro equations numerically

11 September, 2008M. Csanád, WPCF08 Krakow3 How analytic hydro works Take hydro equations and EoSTake hydro equations and EoS Find a solutionFind a solution –Will contain parameters (like Friedmann, Schwarzschild etc.) –Will use a possible set of initial conditions Use a freeze-out conditionUse a freeze-out condition –Eg fixed proper time or fixed temperature –Generally a hyper-surface Calculate the hadron source functionCalculate the hadron source function Calculate observablesCalculate observables –E.g. spectra, flow, correlations –Straightforward calculation Hydrodynamics: Initial conditions Hydrodynamics: Initial conditions  dynamical equations  freeze-out conditions

11 September, 2008M. Csanád, WPCF08 Krakow4 Famous solutions Landau’s solution (1D, developed for p+p):Landau’s solution (1D, developed for p+p): –Accelerating, implicit, complicated, 1D –L.D. Landau, Izv. Acad. Nauk SSSR 81 (1953) 51 –I.M. Khalatnikov, Zhur. Eksp.Teor.Fiz. 27 (1954) 529 –L.D.Landau and S.Z.Belenkij, Usp. Fiz. Nauk 56 (1955) 309 Hwa-Bjorken solution:Hwa-Bjorken solution: –Non-accelerating, explicit, simple, 1D, boost-invariant –R.C. Hwa, Phys. Rev. D10, 2260 (1974) –J.D. Bjorken, Phys. Rev. D27, 40(1983) OthersOthers –Chiu, Sudarshan and Wang –Baym, Friman, Blaizot, Soyeur and Czyz –Srivastava, Alam, Chakrabarty, Raha and Sinha

11 September, 2008M. Csanád, WPCF08 Krakow5 3D solutions Nonrelativistic, spherically symmetric solutionNonrelativistic, spherically symmetric solution –P. Csizmadia, T. Csörgő, B. Lukács, nucl-th/ Relativistic, spherically symmetric solutionRelativistic, spherically symmetric solution –T. Csörgő, L. Csernai, Y. Hama, T. Kodama, nucl-th/ –Accelerationless –Hubble flow profile (flow proportional to distance) Relativistic, spherically symmetric solutionRelativistic, spherically symmetric solution –T. Csörgő, M. Nagy, M. Csanád, nucl-th/ –Accelerating –Realistic rapidity distributions (data described by it) –Advanced energy and lifetime estimate All describe expanding fireballsAll describe expanding fireballs –Sometimes: rings/shells of fire

11 September, 2008M. Csanád, WPCF08 Krakow6 Where we are Other accelerationless solutions:Other accelerationless solutions: –T. S. Biró, Phys. Lett. B 474, 21 (2000) –Yu. M. Sinyukov and I. A. Karpenko, nucl-th/ Solutions by coordinate transformations:Solutions by coordinate transformations: –S. Pratt, nucl-th/ Revival of interestRevival of interest –Bialas, Janik, Peschanski: Phys.Rev.C76:054901,2007 –Borsch, Zhdanov: SIGMA 3:116,2007 There are some exotic solutions as wellThere are some exotic solutions as well Need for solutions that are:Need for solutions that are: –explicit –simple –accelerating –relativistic –realistic / compatible with the data Buda-Lund type of solutions: each fulfilledBuda-Lund type of solutions: each fulfilled –but not simultaneously

11 September, 2008M. Csanád, WPCF08 Krakow7 A Buda-Lund type of solution For sake of simplicity, take the following nonrel. solutionFor sake of simplicity, take the following nonrel. solution –Csörgő, Akkelin, Hama, Lukács, Sinyukov, Phys.Rev.C67:034904,2003 Self similarly expanding ellipsoid, Gaussian ICSelf similarly expanding ellipsoid, Gaussian IC Flow profile: directional HubbleFlow profile: directional Hubble Equation of motion for principal axes:Equation of motion for principal axes: Freeze-out at constant temperature assumedFreeze-out at constant temperature assumed

11 September, 2008M. Csanád, WPCF08 Krakow8 Dependence on IC+EoS (nonrel) Evolution of principal axes of the ellipsoidEvolution of principal axes of the ellipsoid

11 September, 2008M. Csanád, WPCF08 Krakow9 Dependence on IC+EoS (nonrel) Evolution of expansion ratesEvolution of expansion rates

11 September, 2008M. Csanád, WPCF08 Krakow10 Dependence on IC+EoS (nonrel) Time evolution of temperatureTime evolution of temperature

11 September, 2008M. Csanád, WPCF08 Krakow11 Same in relativistic hydro Nagy, Csörgő, Csanád, Phys.Rev.C77:024908,2008, Csanád, Nagy, Csörgő, Eur.Phys.J.ST 155:19-26,2008 Same final state for different evolutions, even with viscosity (see T. Csörgő, WPCF’07)

11 September, 2008M. Csanád, WPCF08 Krakow12 Conjectured EoS dependence of  0 Relativistic, accelerating solution → describe dn/d Relativistic, accelerating solution → describe dn/d  Energy density modified compared to BjörkenEnergy density modified compared to Björken With  f /  0 = 10, c s = 0.35 [nucl-ex/ ], correction to   is about 2.9×With  f /  0 = 10, c s = 0.35 [nucl-ex/ ], correction to   is about 2.9×   = 14.5 GeV/fm 3 in 200 GeV, 0-5 %Au+Au at RHIC   = 14.5 GeV/fm 3 in 200 GeV, 0-5 %Au+Au at RHIC

11 September, 2008M. Csanád, WPCF08 Krakow13 Predictions of the Buda-Lund models Hydro predicts scaling (even viscous)Hydro predicts scaling (even viscous) What does a scaling mean?What does a scaling mean? –See Hubble’s law – or Newtonian gravity: –Data collapse Collective, thermal behavior →Collective, thermal behavior → Loss of information Spectra slopes:Spectra slopes: Elliptic flow:Elliptic flow: HBT radii:HBT radii:

11 September, 2008M. Csanád, WPCF08 Krakow14 Elliptic flow Prediction of 2003: scaling variablePrediction of 2003: scaling variable If plotted against ‘w’, data collapse:If plotted against ‘w’, data collapse: –From 20 to 200 GeV –All centralities –Pion, kaon, proton –p t and  dependence Prediction:Prediction: Csanád, Csörgő, Lörstad, Ster et al. nucl-th/

11 September, 2008M. Csanád, WPCF08 Krakow15 Prediction for HBT radii Exact hydro result (nonrel shown)Exact hydro result (nonrel shown) Correlation radii = geometrical  thermalCorrelation radii = geometrical  thermal –Harmonic squared sum: 1/R 2 corr = 1/R 2 geom + 1/R 2 therm Geom.: R geom = XGeom.: R geom = X Thermal:Thermal: Hubble-profile → X th =Y thHubble-profile → X th =Y th R out  R side  R longR out  R side  R long Correlation radii Geometrical radii Thermal radii

11 September, 2008M. Csanád, WPCF08 Krakow16 Azimuthal HBT and elliptic flow AsHBT data describedAsHBT data described Both governed by asymmetriesBoth governed by asymmetries – a s : coordinate-space –  2 : momentum-space – v 2 depends only on  2 Csanád, Tomasik, CsörgőCsanád, Tomasik, Csörgő Eur. Phys. J. A 37,111 (2008)

11 September, 2008M. Csanád, WPCF08 Krakow17 Azimuthal HBT and elliptic flow Simultaneous descriptionSimultaneous description Slopes as before (slide 12)Slopes as before (slide 12) Elliptic flow as before (slide 13)Elliptic flow as before (slide 13) Correlation radiiCorrelation radii Asymmetry parameters used:Asymmetry parameters used:  2 =0.17, a s =0.997 Csanád, Tomasik, CsörgőCsanád, Tomasik, Csörgő Eur. Phys. J. A 37,111 (2008)

11 September, 2008M. Csanád, WPCF08 Krakow18 Prediction for kaon HBT Transverse mass scaling → same curve for pions and kaons if plotted versus m tTransverse mass scaling → same curve for pions and kaons if plotted versus m t Other models?Other models? K

11 September, 2008M. Csanád, WPCF08 Krakow19 Beyond hydro: long source tails HRC reproduces HBT (hydro as well)HRC reproduces HBT (hydro as well) But also long tails in two-pion source!But also long tails in two-pion source! Anomalous diffusion (rescattering)Anomalous diffusion (rescattering) This goes beyond hydroThis goes beyond hydro –Hydro: regular m t scaling –Lévy-tails important here! Tail depends on m.f.p.,Tail depends on m.f.p., thus the cross-section –Kaons: lowest cross- section → heaviest tail T. Humanic, Int. J. Mod. Phys. E (2006) Csörgő, Braz.J.Phys.37: ,2007

11 September, 2008M. Csanád, WPCF08 Krakow20 The HBT test Models with acceptable results:Models with acceptable results: –nucl-th/ Multiphase Trasport model (AMPT) ‏ Z. Lin, C. M. Ko, S. Pal –nucl-th/ Hadron cascade model T. Humanic –hep-ph/ Family of Buda-Lund hydro models T. Csörgő, B. Lörstad, A. Ster –hep-ph/ Cracow (single freeze-out, thermal) W. Broniowski, W. Florkowski –nucl-ex/ Blast wave model F. Retiére for STAR – boost invariant rel. hydro, W. Broniowski, M. Chojnacki, W. Broniowski, M. Chojnacki, W. Florkowski, A. Kisiel

11 September, 2008M. Csanád, WPCF08 Krakow21 Conclusions Several types of hydro modelsSeveral types of hydro models –Success in spectra and flow –Few describe v 2 (  ) or HBT Hadronic final state: combination of IC, EoS and FCHadronic final state: combination of IC, EoS and FC –Penetrating probes required Similarities of successful models?Similarities of successful models? –Gaussian IC, Hubble flow etc. –Compare Hubble-coefficients in models! –Search for decisive tests!

Thank you for your attention