Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 7 Carbohydrates to accompany Biochemistry, 2/e by Reginald Garrett.

Slides:



Advertisements
Similar presentations
Number of Carbohydrate Units.
Advertisements

Chapter 16 Carbohydrates
Chapter 12 Carbohydrates
Chapter 17: Carbohydrates
CH 7: Carbohydrates. First Biochemistry Chapter Biochemistry – study of substances found in living organisms and their interactions with each other Most.
XXXI. Carbohydrates A.Overview Carbohydrates are the most abundant class of naturally occurring organic compounds. They make up 50% of the earth’s biomass.
(Chapter 7). - Overview - Classification and Structure of Carbohydrates : A) Isomers and epimers B) Enantiomers 1 st Lecture: Pages :
Prentice Hall c2002Chapter 81 Chapter 8 - Carbohydrates Carbohydrates (“hydrate of carbon”) have empirical formulas of (CH 2 O) n, where n ≥ 3 Monosaccharides.
Case Western Reserve University
Chapter 18 Carbohydrates. Goals Distinguish and describe mono, di, oligo, and polysaccharides Classify and name monosaccharides Know D aldose and ketose.
Carbohydrates What are they? –Sugars, starches & much more –Most abundant molecules on Earth –End products of photosynthesis.
Carbohydrates. 1. Energy source for plants and animals 2. Source of carbon in metabolic processes 3. Storage form of energy 4. Structural elements of.
Chapter 8 (part 1) Carbohydrates.
Carbohydrates Pratt and Cornely, Chapter 11. Objectives Recognize and draw particular carbohydrate structures Know general structural elements of cyclic.
1 Chapter 12 Outline 12.1 Monosaccharides - Aldose and ketose -Glyceraldehyde, Stereoisomers (Mirror image = enantiomer), D and L isomers of Glyceraldehyde.
1 Carbohydrates Chapter 27 Hein * Best * Pattison * Arena Colleen Kelley Chemistry Department Pima Community College © John Wiley and Sons, Inc. Version.
LEHNINGER PRINCIPLES OF BIOCHEMISTRY
Chapter 16 Carbohydrates Denniston Topping Caret 6 th Edition Copyright  The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture 1. Introduction about Biochemistry Biochemistry :- (from Greek : βίος, bios, "life") is the study of the chemical processes in living organisms.

Carbohydrates Larry J Scheffler Lincoln High School 2009 Version
Chapter 7 Carbohydrates and the Glycoconjugates of Cell Surfaces
Phosphate Ester Formation
Carbohydrates and the Glycoconjugates of Cell Surfaces
Chapter 25 Biomolecules: Carbohydrates. 2 The Importance of Carbohydrates Carbohydrates are… –widely distributed in nature. –key intermediates in metabolism.
Chapter 17: Carbohydrates Spencer L. Seager Michael R. Slabaugh Jennifer P. Harris.
CARBOHYDRATES Carbohydrates are a major energy source for living organisms Carbohydrates always have a 1:2:1 ratio of carbon, hydrogen, and oxygen. Mitochondria.
Carbohydrates. Structure and Function How do we define a carbohydrate? aldehydes or ketones with multiple hydroxyl groups “hydrate” of carbon – C-H 2.
Carbohydrates. Introduction: Carbohydrates are the most abundant organic compounds in the plant world They are storehouses of chemical energy (glucose,
Carbohydrates. Most abundant class of biological molecules on Earth Originally produced through CO 2 fixation during photosynthesis.
Prentice Hall c2002Chapter 81 Chapter 8 - Carbohydrates Carbohydrates (“hydrate of carbon”) have empirical formulas of (CH 2 O) n, where n ≥ 3 Monosaccharides.
DS/ Reducing vs non-reducing α ( D) glucopyranosyl 1 2 fructofuranoside β ( D) galactopyranosyl 1 4 glucopyranose SucroseLactose.
Chapter 10 – Carbohydrates
Chapter 8 (part2) Carbohydrates: oligo- and polysaccharides.
CARBOHYDRATE CHEMISTRY DR AMINA TARIQ BIOCHEMISTRY.
Chapter 18: Carbohydrates
Copyright © Houghton Mifflin Company. All rights reserved.3–13–1 Biochemistry Biochemistry is the study of chemical substances found in living systems.
17.5 Properties of Monosaccharides
Carbohydrates. Structure of Carbohydrates Properties of Carbohydrates Most abundant class of organic molecules Source: Photosynthesis Classification.
Carbohydrates. Carbohydrates serve a variety of functions Energy storage and food Structure and support Lubrication Protection Recognition and signaling.
Number of Carbohydrate Units Monosaccharides = single unit Disaccharides = two units Oligiosaccharide = 3-10 units Polysaccharide = 11+ units Bonus: Can.
Carbohydrates.
Chapter 8 Opener Carbohydrates General formula: ~(CH 2 O)n Biological Roles Structural (e.g. cellulose in plants) Molecular recognition (modification of.
Carbohydrates What are they? Formula = (CH 2 O) n where n > 3 Also called sugar Major biomolecule in body What do cells do with carbs? Oxidize them for.
CARBOHYDRATE CHEMISTRY SUURBAAR JENNIFER. I NTRODUCTION Carbohydrates are one of the three major classes of biological molecules. Carbohydrates are also.
CARBOHYDRATE CHEMISTRY UNIT-1 CHAPTER-2. I NTRODUCTION Carbohydrates are one of the three major classes of biological molecules. Carbohydrates are also.
Carbohydrates most abundant organic molecules in nature Lecture 15. Carbohydrates1 Lecture 14. Subunit Interactions and Quaternary Structure 1 Lecture.
Chapter 16 Carbohydrates Mary K. Campbell Shawn O. Farrell Paul D. Adams University of Arkansas.
Chapter 20: Carbohydrates K.DunlapChem 104. Carbohydrates Composed of carbon, oxygen, hydrogen two-third of the human diet is composed of carbohydrates.
Chapter 5 The Structure and Function of Macromolecules Intro & Carbohydrates.
CARBOHYDRATES Carbohydrates.
Sugars Alice Skoumalová.
Carbohydrates Sources of Carbohydrates Digestion and Absorption
CARBOHYDRATE CHEMISTRY
Pratt and Cornely, Chapter 11
Carbohydrates Dr. Gamal Gabr.
LincoLarry Jln High School
CHEMISTRY OF CARBOHYDRATES
Chapter 12 Carbohydrates
Chapter 12 Carbohydrates
Figure: UN Title: D-Glucose and D-fructose. Caption:
Chapter 7 Chem 341 Suroviec Fall 2016.
CARBOHYDRATE CHEMISTRY
Part II: Carbohydrates
The Organic Chemistry of Carbohydrates
CARBOHYDRATE CHEMISTRY
Chapter 8 (part 1) Carbohydrates.
Chapter 16 Carbohydrates Adel M. Awadallah Islamic University of Gaza
CARBOHYDRATES LECTURE-01.
Sugars 10/29/09.
Presentation transcript:

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 7 Carbohydrates to accompany Biochemistry, 2/e by Reginald Garrett and Charles Grisham All rights reserved. Requests for permission to make copies of any part of the work should be mailed to: Permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Outline 7.1 Carbohydrate Nomenclature 7.2 Monosaccharides 7.3 Oligosaccharides 7.4 Polysaccharides

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company 7.1 Nomenclature Carbohydrates are hydrates of carbon Monosaccharides (simple sugars) cannot be broken down into simpler sugars under mild conditions Oligo = "a few" - usually 2 to 10 Polysaccharides are polymers of the simple sugars

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company 7.2 Monsaccharides An organic chemistry review Aldoses and ketoses contain aldehyde and ketone functions, respectively Triose, tetrose, etc. denotes number of carbons Aldoses with 3C or more and ketoses with 4C or more are chiral Review Fischer projections and D,L system

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Stereochemistry Review Read text on p carefully ! D,L designation refers to the configuration of the highest-numbered asymmetric center D,L only refers the stereocenter of interest back to D- and L-glyceraldehyde! D,L do not specify the sign of rotation of plane-polarized light! All structures in Figures 7.2 and 7.3 are D D-sugars predominate in nature

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company More Stereochemistry Know these definitions Stereoisomers that are mirror images of each other are enantiomers Pairs of isomers that have opposite configurations at one or more chiral centers but are NOT mirror images are diastereomers Any 2 sugars in a row in 10.2 and 10.3 are diastereomers Two sugars that differ in configuration at only one chiral center are epimers

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Cyclic monsaccharide structures and anomeric forms Glucose (an aldose) can cyclize to form a cyclic hemiacetal Fructose (a ketose) can cyclize to form a cyclic hemiketal Cyclic form of glucose is a pyranose Cyclic form of fructose is a furanose

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Cyclic monsaccharide structures and anomeric forms Cyclic forms possess anomeric carbons For D-sugars, alpha has OH down, beta up For L-sugars, the reverse is true

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Monosaccharide Derivatives Reducing sugars: sugars with free anomeric carbons - they will reduce oxidizing agents, such as peroxide, ferricyanide and some metals (Cu and Ag) These redox reactions convert the sugar to a sugar acid Glucose is a reducing sugar - so these reactions are the basis for diagnostic tests for blood sugar

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company More Monosaccharide Derivatives Sugar alcohols: mild reduction of sugars Deoxy sugars: constituents of DNA, etc. Sugar esters: phosphate esters like ATP are important Amino sugars contain an amino group in place of a hydroxyl group Acetals, ketals and glycosides: basis for oligo- and poly-saccharides

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company 7.3 Oligosaccharides Don't memorize structures, but know the important features Be able to identify anomeric carbons and reducing and nonreducing ends Sucrose is NOT a reducing sugar Browse the structures in Fig and Figure 7.20 Note carefully the nomenclature of links! Be able to recognize alpha(1,4), beta(1,4), etc

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company 7.4 Polysaccharides Functions: storage, structure, recognition Nomenclature: homopolysaccharide vs. heteropolysaccharide Starch and glycogen are storage molecules Chitin and cellulose are structural molecules Cell surface polysaccharides are recognition molecules

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Starch A plant storage polysaccharide Two forms: amylose and amylopectin Most starch is 10-30% amylose and % amylopectin Branches in amylopectin every residues Amylose has alpha(1,4) links, one reducing end

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Starch A plant storage polysaccharide Amylose is poorly soluble in water, but forms micellar suspensions In these suspensions, amylose is helical –iodine fits into the helices to produce a blue color

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Why branching in Starch? Consider the phosphorylase reaction... Phosphorylase releases glucose-1-P products from the amylose or amylopectin chains The more branches, the more sites for phosphorylase attack Branches provide a mechanism for quickly releasing (or storing) glucose units for (or from) metabolism

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Glycogen The glucose storage device in animals Glycogen constitutes up to 10% of liver mass and 1-2% of muscle mass Glycogen is stored energy for the organism Only difference from starch: number of branches Alpha(1,6) branches every 8-12 residues Like amylopectin, glycogen gives a red- violet color with iodine

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Dextrans A small but significant difference from starch and glycogen If you change the main linkages between glucose from alpha(1,4) to alpha(1,6), you get a new family of polysaccharides - dextrans Branches can be (1,2), (1,3), or (1,4)

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Dextrans A small but significant difference from starch and glycogen Dextrans formed by bacteria are components of dental plaque Cross-linked dextrans are used as "Sephadex" gels in column chromatography These gels are up to 98% water!

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Structural Polysaccharides Composition similar to storage polysaccharides, but small structural differences greatly influence properties Cellulose is the most abundant natural polymer on earth Cellulose is the principal strength and support of trees and plants Cellulose can also be soft and fuzzy - in cotton

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Structural Polysaccharides Composition similar to storage polysaccharides, but small structural differences greatly influence properties Beta(1,4) linkages make all the difference! Strands of cellulose form extended ribbons

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Other Structural Polysaccharides Further reading - pages Chitin - exoskeletons of crustaceans, insects and spiders, and cell walls of fungi –similar to cellulose, but C-2s are N-acetyl –cellulose strands are parallel, chitins can be parallell or antiparallel

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Other Structural Polysaccharides Alginates - Ca-binding polymers in algae Agarose and agaropectin - galactose polymers Glycosaminoglycans - repeating disaccharides with amino sugars and negative charges

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company