Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review of random walks. 2.Ballot theorem. 3.P( avoiding zero )

Slides:



Advertisements
Similar presentations
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms 2.Flushes 3.Hellmuth vs. Farha 4.Worst possible beat 5.Jackpot.
Advertisements

Lecture 13. Poker Two basic concepts: Poker is a game of skill, not luck. If you want to win at poker, – make sure you are very skilled at the game, and.
Christian Alliance S C Chan Memorial College F.2 PE Theory – Badminton Mr. Wong Shun Ki, Aaron.
6-1 Stats Unit 6 Sampling Distributions and Statistical Inference - 1 FPP Chapters 16-18, 20-21, 23 The Law of Averages (Ch 16) Box Models (Ch 16) Sampling.
Part 3: The Minimax Theorem
Problem 5.31 Ryan H Kian L Jun Oh Y Starting Out:  Define a Round Robin Tournament:  A tournament in which each player plays every other player. There.
Section 7.4 (partially). Section Summary Expected Value Linearity of Expectations Independent Random Variables.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms. 2.Hellmuth/Gold. 3.Poisson. 4.Continuous distributions.
Multiplication Rule. A tree structure is a useful tool for keeping systematic track of all possibilities in situations in which events happen in order.
Suppose an ordinary, fair six-sided die is rolled (i.e., for i = 1, 2, 3, 4, 5, 6, there is one side with i spots), and X = “the number of spots facing.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Ly vs Negreanu. 2.Flush draws and straight draws 3.Project B teams.
Chapter 3 Section 3.5 Expected Value. When the result of an experiment is one of several numbers, (sometimes called a random variable) we can calculate.
Brian Duddy.  Two players, X and Y, are playing a card game- goal is to find optimal strategy for X  X has red ace (A), black ace (A), and red two (2)
WonLost 1234 Year Number of Games Warm-Up 1) In which year(s) did the team lose more games than they won? 2) In which year did the team play.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Thur 3/8/12: 0.HAND IN HW3 again! 1.E(X+Y) example corrected. 2.Random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterm. 2.Review of Bernoulli and binomial random variables. 3.Geometric.
Expected values and variances. Formula For a discrete random variable X and pmf p(X): Expected value: Variance: Alternate formula for variance:  Var(x)=E(X^2)-[E(X)]^2.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Collect Hw4. 2.Review list. 3.Answers to hw4. 4.Project B tournament.
Binomial Coefficients, Inclusion-exclusion principle
Counting Subsets of a Set: Combinations Lecture 31 Section 6.4 Wed, Mar 21, 2007.
Suppose someone bets (or raises) you, going all-in. What should your chances of winning be in order for you to correctly call? Let B = the amount bet to.
Introduction to Chess Club
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Outline for the day: 1.Discuss handout / get new handout. 2.Teams 3.Example projects 4.Expected value 5.Pot odds calculations 6.Hansen / Negreanu 7.P(4.
Counting Subsets of a Set: Combinations Lecture 33 Section 6.4 Tue, Mar 27, 2007.
Counting nCr = n!/r!(n-r)!=nC(n-r) This equation reflects the fact that selecting r items is same as selecting n-r items in forming a combination from.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW3 2.Project B teams 3.Gold vs. Helmuth 4.Farha vs. Gold 5.Flush.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Deal-making and expected value 2.Odds ratios, revisited 3.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Poker Code competition: all-in or fold.   u 
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Part 1: Theory Ver Chapter 3 Conditional Probability and Independence.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value and pot odds, continued 2.Violette/Elezra example.
Discrete Mathematics, 1st Edition Kevin Ferland Chapter 6 Basic Counting 1.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Fred Savage hand. 2.Random walks, continued, for 7.14.
Expected value (µ) = ∑ y P(y) Sample mean (X) = ∑X i / n Sample standard deviation = √[∑(X i - X) 2 / (n-1)] iid: independent and identically distributed.
President UniversityErwin SitompulPBST 4/1 Dr.-Ing. Erwin Sitompul President University Lecture 4 Probability and Statistics
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Project B example, again 2.Booth vs. Ivey 3.Bayes Rule examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(X+Y) = E(X) + E(Y) examples. 2.CLT examples. 3.Lucky poker. 4.Farha.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Tournaments 2.Review list 3.Random walk and other examples 4.Evaluations.
1)Hand in HW. 2)No class Tuesday (Veteran’s Day) 3)Midterm Thursday (1 page, double-sided, of notes allowed) 4)Review List 5)Review of Discrete variables.
Functions of Random Variables
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW4 notes. 2.Law of Large Numbers (LLN). 3.Central Limit Theorem.
S TOCHASTIC M ODELS L ECTURE 4 B ROWNIAN M OTIONS Nan Chen MSc Program in Financial Engineering The Chinese University of Hong Kong (Shenzhen) Nov 11,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.PDFs and CDFs, for Random walks, ch 7.6. Reflection principle,
Incomplete Information and Bayes-Nash Equilibrium.
(Day 14 was review. Day 15 was the midterm.) Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Return and review.
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value. 2.Heads up with AA. 3.Heads up with Gus vs.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Counting Subsets of a Set: Combinations Lecture 28 Section 6.4 Thu, Mar 30, 2006.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Presentation transcript:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review of random walks. 2.Ballot theorem. 3.P( avoiding zero ) for a random walk. 4.Cada vs. Ivey. 5.Martingale games. 6. Chip proportions and induction. * Computer Project B will be due on Monday, Nov 30, at 8:00pm. * No class Thursday, Dec 3. Last class is Dec 1. * Final is Thursday, Dec 10, 3-6pm, in class, open note. * Bring a calculator and a pen or pencil. * about multiple choice open-answers + an extra-credit with 2 open-answer parts.   u 

TEAMS FOR PROJECT B: team a CoreyC AraD team b WooO JiweiS team c DaiN SethB team d JasonG BrianY team e SarahW MichaelD team f ZiqiM BenjaminN team g LongL AmandaD team h AvinashC ChrisB team i DavidC RafalJ team j HoL ErikM team k JamesL RyanK team l JesseC JeffC SamanthaS

1. Random walks. Suppose that X 1, X 2, …, are iid and that Y k = X 1 + … + X k for k = 1, 2, …. Y 0 = 0. Then the totals {Y 1, Y 2, …} is a random walk. The classical example is when each X i is 1 or -1 with probability ½ each. For the classical random walk,.P(Y k = j) = Choose{k, (k+j)/2} (1/2) k..If j and k are > 0, then the number of paths from (0,j) to (n,k) that touch the x-axis = the number of paths from (0,-j) to (n,k). [reflection principle].In an election, if candidate X gets x votes, and candidate Y gets y votes, where x > y, then the probability that X always leads Y throughout the counting is (x-y) / (x+y). [ballot theorem].P(Y 1 ≠ 0, Y 2 ≠ 0, …, Y 2n ≠ 0) = P(Y 2n = 0).

2. Ballot theorem. Suppose that in an election, candidate X gets x votes, and candidate Y gets y votes, where x > y. The probability that X always leads Y throughout the counting is (x-y) / (x+y). Proof. We know that, after counting n = x+y votes, the total difference in votes is x-y = a. We want to count the number of paths from (1,1) to (n,a) that do not touch the x-axis. By the reflection principle, the number of paths from (1,1) to (n,a) that do touch the x-axis equals the total number of paths from (1,-1) to (n,a). So the number of paths from (1,1) to (n,a) that do not touch the x-axis equals the number of paths from (1,1) to (n,a) minus the number of paths from (1,-1) to (n,a) = Choose(n-1,x-1) – Choose(n-1,x) = (n-1)! / [(x-1)! (n-x)!] – (n-1)! / [x! (n-x-1)!] = (n-1)! x / [x! (n-x)!] – (n-1)! (n-x) / [x! (n-x)!] = {n! / [x! (n-x)!]} (x/n) – {n! / [x! (n-x)!]} (n-x)/n = (x – y) / (x+y) {n! / [x! (n-x)!]} = (x – y) / (x+y) {Number of paths from (0,0) to (n,a)}. And each path is equally likely.

3. Avoiding zero. For a classical random walk, P(Y 1 ≠ 0, Y 2 ≠ 0, …, Y 2n ≠ 0) = P(Y 2n = 0). Proof. The number of paths from (0,0) to (2n, 2r) that don’t touch the x-axis at positive times = the number of paths from (1,1) to (2n,2r) that don’t touch the x-axis at positive times = paths from (1,1) to (2n,2r) - paths from (1,-1) to (2n,2r) by reflection principle = N 2n-1,2r-1 – N 2n-1,2r+1 Let p n,x = P(Y n = x). P(Y 1 > 0, Y 2 > 0, …, Y 2n-1 > 0, Y 2n = 2r) = ½[p 2n-1,2r-1 – p 2n-1,2r+1 ]. Summing from r = 1 to ∞, P(Y 1 > 0, Y 2 > 0, …, Y 2n-1 > 0, Y 2n > 0) = ½[p 2n-1,1 – p 2n-1,3 ] + ½[p 2n-1,3 – p 2n-1,5 ] + ½[p 2n-1,5 – p 2n-1,7 ] + … = (1/2) p 2n-1,1 = (1/2) P(Y 2n = 0), because to end up at (2n, 0), you have to be at (2n-1,+/-1), so P(Y 2n = 0) = (1/2) p 2n-1,1 + (1/2) p 2n-1,-1 = p 2n-1,1. By the same argument, P(Y 1 < 0, Y 2 < 0, …, Y 2n-1 < 0, Y 2n < 0) = (1/2) P(Y 2n = 0). So, P(Y 1 ≠ 0, Y 2 ≠ 0, …, Y 2n ≠ 0) = P(Y 2n = 0).

4. Cada vs. Ivey. (Bluffing with medium-strength hands? Questionable.) Bluffing, and catching bluffs, can have huge impacts on equity and expected profit. Equity = pot * P(you win the pot), assuming no folding. Your expected profit = your equity minus how much you put in. (assuming no folding.) If Ivey folds, his profit is surely million. If Ivey calls, he will have put in 4.05 million, and his equity would be 80%*9.2 million = 7.36 million. So, his expected profit if he calls = 7.36 million million = 3.31 million. Difference is 3.31 million minus million = 4.56 million!

5. Martingale games. If a game is fair, then E(X) = 0, regardless of your wager. {E(aX) = aE(X) = a*0 = 0.} Suppose E(X i ) = 0, for i = 1, 2, …, and suppose you wager $1 on game 1. If you win, you stop. If you lose, you wager $2 on game 2. If you win, you stop. If you lose, you wager $4 on game 3, etc. What is your expected profit? After n steps, you will either have lost $1+$2+$4 = $2 n -1 or profited $1. Expected profit = [$-(2 n -1)][1/2] n + [$1][1 - (1/2) n ] = $-2 n /2 n + 1/2 n /2 n = $0. Alternate way: Let Y i = your profit on game i. E(Y i ) = 0 no matter how much you wager. So E(Y 1 + Y 2 + …) = E(Y 1 ) + E(Y 2 ) + … = … = 0.

6. Chip proportions and induction. P(win a tournament) is proportional to your number of chips. Simplified scenario. Suppose you either go up or down 1 each hand, with probability 1/2. Suppose there are n chips, and you have k of them. P(win the tournament given k chips) = P(random walk goes from k to n before hitting 0) = p k. Now, clearly p 0 = 0. Consider p 1. From 1, you will either go to 0 or 2. So, p 1 = 1/2 p 0 + 1/2 p 2 = 1/2 p 2. That is, p 2 = 2 p 1. We have shown that, for j = 0, 1, and 2, p j = j p 1. (induction:) Suppose that, for j = 0, 1, 2, …, m, p j = j p 1. We will show that p m+1 = (m+1) p 1. Therefore, p j = j p 1 for all j. That is, P(win the tournament) is prop. to your number of chips. p m = 1/2 p m-1 + 1/2 p m+1. If p j = j p 1 for j ≤ m, then we have mp 1 = 1/2 (m-1)p 1 + 1/2 p m+1, so p m+1 = 2mp 1 - (m-1) p 1 = (m+1)p 1.

Another simplified scenario. Suppose you either double each hand you play, or go to zero, each with probability 1/2. Again, P(win a tournament) is prop. to your number of chips. Again, p 0 = 0, and p 1 = 1/2 p 2 = 1/2 p 2, so again, p 2 = 2 p 1. We have shown that, for j = 0, 1, and 2, p j = j p 1. (induction:) Suppose that, for j ≤ m, p j = j p 1. We will show that p 2m = (2m) p 1. Therefore, p j = j p 1 for all j = 2 k. That is, P(win the tournament) is prop. to number of chips. This time, p m = 1/2 p 0 + 1/2 p 2m. If p j = j p 1 for j ≤ m, then we have mp 1 = 0 + 1/2 p 2m, so p 2m = 2mp 1. Example (Chen and Ankenman, 2006). Suppose that a $100 winner-take-all tournament has 1024 = 2 10 players. So, you need to double up 10 times to win. Winner gets $102,400. Suppose you have probability p = 0.54 to double up, instead of 0.5. What is your expected profit in the tournament? (Assume only doubling up.) Exp. return = ($102,400) = $ So exp. profit = $