Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.

Slides:



Advertisements
Similar presentations
Bill Spence* Oxford April 2007
Advertisements

Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & with Krzysztof.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.
1 Top Production Processes at Hadron Colliders By Paul Mellor.
Twistors and Pertubative Gravity including work (2005) with Z Bern, S Bidder, E Bjerrum-Bohr, H Ita, W Perkins, K Risager From Twistors to Amplitudes 2005.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Introduction to On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Orsay Summer School, Correlations.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen; & with Krzysztof Kajda & Janusz Gluza.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
QCD at the LHC: What needs to be done? West Coast LHC Meeting Zvi Bern, UCLA Part 2: Higher Order QCD.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture IV.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture II.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Structure of Amplitudes in Gravity I Lagrangian Formulation of Gravity, Tree amplitudes, Helicity Formalism, Amplitudes in Twistor Space, New techniques.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture I.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Recurrence, Unitarity and Twistors including work with I. Bena, Z. Bern, V. Del Duca, D. Dunbar, L. Dixon, D. Forde, P. Mastrolia, R. Roiban.
Results in N=8 Supergravity Emil Bjerrum-Bohr HP 2 Zurich 9/9/06 Harald Ita Warren Perkins Dave Dunbar, Swansea University hep-th/0609??? Kasper Risager.
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Unitarity and Factorisation in Quantum Field Theory Zurich Zurich 2008 David Dunbar, Swansea University, Wales, UK VERSUS Unitarity and Factorisation in.
Queen Mary, University of London Nov. 9, 2011 Congkao Wen.
New Methods in Computational Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Higgs Symposium University of Edinburgh January.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
SQG4 - Perturbative and Non-Perturbative Aspects of String Theory and Supergravity Marcel Grossmann -- Paris Niels Emil Jannik Bjerrum-Bohr Niels Bohr.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
The Harmonic Oscillator of One-loop Calculations Peter Uwer SFB meeting, – , Karlsruhe Work done in collaboration with Simon Badger.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004.
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Twistor Inspired techniques in Perturbative Gauge Theories including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Bootstrapping One-loop QCD Scattering Amplitudes Lance Dixon, SLAC Fermilab Theory Seminar June 8, 2006 Z. Bern, LD, D. Kosower, hep-th/ , hep-ph/ ,
1 On-Shell Methods in Perturbative QCD ICHEP 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/ hep-ph/
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Darren Forde (SLAC & UCLA). NLO amplitudes using Feynman diagram techniques The limitations. “State of the art” results. New techniques required Unitarity.
Twistors and Gauge Theory DESY Theory Workshop September 30 September 30, 2005.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Unitarity and Amplitudes at Maximal Supersymmetry David A. Kosower with Z. Bern, J.J. Carrasco, M. Czakon, L. Dixon, D. Dunbar, H. Johansson, R. Roiban,
UV structure of N=8 Supergravity Emil Bjerrum-Bohr, IAS Windows on Quantum Gravity 18 th June 08, UCLA Harald Ita, UCLA Warren Perkins Dave Dunbar, Swansea.
Darren Forde (SLAC & UCLA) arXiv: (To appear this evening)
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture I.
Recent Developments in Perturbative QCD Lance Dixon, SLAC DIS 2005 Madison, April 27, 2005.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
From Twistors to Gauge-Theory Amplitudes WHEPP, Bhubaneswar, India January 7 January 7, 2006.
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
NLO Vector+Jets Predictions with B LACK H AT & SHERPA David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration.
On-Shell Methods in QCD: First Digits for BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration.
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
June 19, 2007 Manchester1 High-Energy Electroweak Physics Parallel Session Zoltan Kunszt, ETH, Zurich Unitarity Cuts and Reduction of Master Integrals.
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Darren Forde (SLAC & UCLA) arXiv: [hep-ph], hep-ph/ , hep-ph/ In collaboration with Carola Berger, Zvi Bern, Lance Dixon & David.
Amplitudes from Scattering Equations and Q-cuts
Trees in N=8 SUGRA and Loops in N=4 SYM
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
Unitarity Methods in Quantum Field Theory
On-Shell Meets Observation or, the Rubber Meets the Road
Modern Methods for Loop Calculations of Amplitudes with Many Legs
Analytic Results for Two-Loop Yang-Mills
Computation of Multi-Jet QCD Amplitudes at NLO
Presentation transcript:

Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen , , & in progress Hong Kong Univ of Science & Tech, Institute for Advanced Study May 28, 2013

Amplitudes in Gauge Theories Amplitudes are the key quantity in perturbative gauge theories Remarkable developments in recent years at the confluence of string theory, perturbative N =4 SUSY gauge theory, and integrability Explicit calculations in N =4 SUSY have lead to a lot of progress in discovering new symmetries (dual conformal symmetry) and new structures not manifest in the Lagrangian or on general grounds Infrared-divergent but all infrared-safe physical quantities can be built out of them Basic building block for physics predictions in QCD

Next-to-Leading Order in QCD Precision QCD requires at least NLO QCD at LO is not quantitative: large dependence on unphysical renormalization and factorization scales NLO: reduced dependence, first quantitative prediction NLO importance grows with increasing number of jets Applications to Multi-Jet Processes:  Measurements of Standard-Model distributions & cross sections  Estimating backgrounds in Searches Expect predictions reliable to 10–15% <5% predictions will require NNLO

NLO calculations: require one-loop amplitudes For NNLO: need to go beyond one loop In some cases, we need two-loop amplitudes just for NLO gg  W + W − LO for subprocess is a one-loop amplitude squared down by two powers of α s, but enhanced by gluon distribution 5% of total cross TeV 20–25% scale dependence 25% of cross section for Higgs search 25–30% scale dependence Binoth, Ciccolini, Kauer, Krämer (2005) Some indications from experiment that the measured rate is 10–15% high: can’t resolve this without NLO corrections

A Difficulty with Feynman Diagrams Huge number of diagrams in calculations of interest — factorial growth 2 → 6 jets: tree diagrams, ~ 2.5 ∙ 10 7 terms ~2.9 ∙ loop diagrams, ~ 1.9 ∙ terms

Results Are Simple! Color Decomposition Parke–Taylor formula for A MHV Mangano, Parke, & Xu Simplicity carries over to one-loop; in N = 4

Spinor Variables Introduce spinor products Can be evaluated numerically

So What’s Wrong with Feynman Diagrams? Vertices and propagators involve gauge-variant off-shell states Each diagram is not gauge-invariant — huge cancellations of gauge-noninvariant, redundant, parts are to blame (exacerbated by high-rank tensor reductions) Simple results should have a simple derivation — Feynman (attr) Want approach in terms of physical states only

On-Shell Methods Use only information from physical states Use properties of amplitudes as calculational tools – Factorization → on-shell recursion ( Britto, Cachazo, Feng, Witten,… ) – Unitarity → unitarity method ( Bern, Dixon, Dunbar, DAK,… ) – Underlying field theory → integral basis Formalism Known integral basis at one loop: Unitarity On-shell Recursion; D-dimensional unitarity via ∫ mass Rational function of spinors

Unitarity-Based Calculations Bern, Dixon, Dunbar, & DAK, ph/ , ph/ Replace two propagators by on-shell delta functions  Sum of integrals with coefficients; separate them by algebra

Generalized Unitarity Unitarity picks out contributions with two specified propagators Can we pick out contributions with more than two specified propagators? Yes — cut more lines Isolates smaller set of integrals: only integrals with propagators corresponding to cuts will show up Triple cut — no bubbles, one triangle, smaller set of boxes

Can we isolate a single integral? D = 4  loop momentum has four components Cut four specified propagators (quadruple cut) would isolate a single box

Quadruple Cuts Work in D=4 for the algebra Four degrees of freedom & four delta functions … but are there any solutions?

Do Quadruple Cuts Have Solutions? The delta functions instruct us to solve 1 quadratic, 3 linear equations  2 solutions If k 1 and k 4 are massless, we can write down the solutions explicitly solves eqs 1,2,4; Impose 3 rd to find or

Solutions are complex The delta functions would actually give zero! Need to reinterpret delta functions as contour integrals around a global pole [ other contexts: Vergu; Roiban, Spradlin, Volovich; Mason & Skinner ] Reinterpret cutting as contour modification

Two Problems We don’t know how to choose a contour Changing the contour can break equations: is no longer true if we modify the real contour to circle one of the poles Remarkably, these two problems cancel each other out

Require vanishing Feynman integrals to continue vanishing on cuts General contour  a 1 = a 2

Box Coefficient Go back to master equation Change to quadruple-cut contour C on both sides Solve: No algebraic reductions needed: suitable for pure numerics Britto, Cachazo & Feng (2004) A B DC

Triangle Cuts Unitarity leaves one degree of freedom in triangle integrals. Coefficients are the residues at  Forde

Higher Loops How do we generalize this to higher loops? Work with dimensionally-regulated integrals – Ultraviolet regulator – Infrared regulator – Means of computing rational terms – External momenta, polarization vectors, and spinors are strictly four-dimensional Two kinds of integral bases – To all orders in ε (“ D -dimensional basis”) – Ignoring terms of O ( ε ) (“Regulated four-dimensional basis”)

Planar Two-Loop Integrals Massless internal lines; massless or massive external lines

Examples Massless, one-mass, diagonal two-mass, long-side two-mass double boxes : two integrals Short-side two-mass, three-mass double boxes: three integrals Four-mass double box: four integrals Massless pentabox : three integrals Non-trivial irreducible numerators All integrals with n 2 ≤ n 1 ≤ 4, that is with up to 11 propagators  This is the D -dimensional basis

Four-Dimensional Basis If we drop terms which are ultimately of O ( ε ) in amplitudes,, we can eliminate all integrals beyond the pentabox, that is all integrals with more than eight propagators

Massless Planar Double Box [ Generalization of OPP: Ossola & Mastrolia (2011), Mastrolia, Mirabella, Ossola, Peraro (2012); Badger, Frellesvig, & Zhang (2012) ] Here, generalize work of Britto, Cachazo & Feng, and Forde Take a heptacut — freeze seven of eight degrees of freedom One remaining integration variable z Six solutions, for example S 2

Performing the contour integrals enforcing the heptacut  Jacobian Localizes z  global pole  need contour for z within S i Note that the Jacobian from contour integration is 1/J, not 1/|J|

How Many Global Poles Do We Have? Caron-Huot & Larsen (2012) Parametrization All heptacut solutions have Here, naively two global poles each at z = 0, −χ  12 candidate poles In addition, 6 poles at z =  from irreducible-numerator ∫s 2 additional poles at z = −χ−1 in irreducible-numerator ∫s  20 candidate global poles

But:  Solutions intersect at 6 poles  6 other poles are redundant by Cauchy theorem (∑ residues = 0) Overall, we are left with 8 global poles (massive legs: none; 1; 1 & 3; 1 & 4)

Picking Contours Two master integrals A priori, we can take any linear combination of the 8 tori surrounding global poles; which one should we pick? Need to enforce vanishing of all parity-odd integrals and total derivatives: – 5 insertions of ε tensors  4 independent constraints – 20 insertions of IBP equations  2 additional independent constraints – In each projector, require that other basis integral vanish

Master formulæ for coefficients of basis integrals to O ( ε 0 ) where P 1,2 are linear combinations of T 8 s around global poles More explicitly,

One-Mass & Some Two-Mass Double Boxes Take leg 1 massive; legs 1 & 3 massive; legs 1 & 4 massive Again, two master integrals Choose same numerators as for massless double box: 1 and Structure of heptacuts similar Again 8 true global poles 6 constraint equations from ε tensors and IBP relations Unique projectors — same coefficients as for massless DB (one-mass or diagonal two-mass), shifted for long-side two- mass

Short-side Two-Mass Double Box Take legs 1 & 2 to be massive Three master integrals: I 4 [1], I 4 [ ℓ 1 ∙ k 4 ] and I 4 [ ℓ 2 ∙ k 1 ] Structure of heptacut equations is different: 12 naïve poles …again 8 global poles Only 5 constraint equations Three independent projectors Projectors again unique (but different from massless or one-mass case)

Massive Double Boxes Massive legs: 1; 1 & 3; 1 & 4 Master Integrals: 2 Global Poles: 8 Constraints: 2 (IBP) + 4 (ε tensors) = 6 Unique projectors: 2 Massive legs: 1 & 3; 1, 2 & 3 Master Integrals: 3 Global Poles: 8 Constraints: 1 (IBP) + 4 (ε tensors) = 5 Unique projectors: 3 Massive legs: all Master Integrals: 4 (Equal-mass: 3) Global Poles: 8 Constraints: 0 (IBP) + 4 (ε tensors) = 4 (Equal-mass: 1 sym) Unique projectors: 4 (Equal-mass: 3)

Summary First steps towards a numerical unitarity formalism at two loops Knowledge of an independent integral basis Criterion for constructing explicit formulæ for coefficients of basis integrals Four-point examples: massless, one-mass, two-mass double boxes