Chapter 10 The Restless Ocean

Slides:



Advertisements
Similar presentations
CH 16 The Dynamic Ocean Ocean water is in constant motion and powered by many forces Forces include wind, Coriolis, gravity, density differences Ocean.
Advertisements

Chapter 15 Section - 1.
The Restless Ocean.
The Restless Ocean Chapter 13.
Waves, Tides, and Currents
Section 4. Erosional Problems  America's Pacific Coast Narrow beaches with steep cliffs and mountain ranges Problems come from the changing of natural.
Waves, Beaches, and Coasts Prepared by Betsy Conklin for Dr. Isiorho.
The Dynamic Ocean Ch. 16.
Chapter 15 The Dynamic Ocean.
Chapter 15 Section 3 By- Robert Sterling, Sam Dixon, Ryan McCarthy, Mikaela Cormier, and Sarah Fournier.
Chapter 16 The Dynamic Ocean
© 2012 Pearson Education, Inc. Earth Science, 13e Tarbuck & Lutgens.
Chapter 10 The Restless Ocean
Chapter 10 The Restless Ocean
The Dynamic Ocean Chapter 16.
9.2 Ocean Waves, Tides and Currents
Movements of the Ocean Chapter 21.
The Dynamic Ocean Section 4 dd
16.3 Shoreline Processes and Features
(The Coastal Zone and Waves)
Chapter 12 – THE OCEANS.
Prentice Hall EARTH SCIENCE
Daily Tides Tides happen regularly no matter what the wind is doing Tides occur in all bodies of water but are most noticeable in oceans. High Tide- as.
Movements of the Ocean Chapter 22.
Chapter 16 Section 2 Waves and Tides
Video Field Trip 1. How are waves created? 2. Describe the way in which the moon influences the tides.
© 2011 Pearson Education, Inc. Earth: An Introduction to Physical Geology, 10e Tarbuck & Lutgens.
© 2011 Pearson Education, Inc. The Restless Ocean Chapter 10.
The Dynamic Ocean Chapter 15
Currents and Waves. Surface Currents Ocean Circulation Patterns –Winds are the primary driving force –Relationship between oceanic circulation and atmospheric.
Tuesday February 26, 2013 (Ocean Water Circulation)
Characteristics of Waves
Lecture Outlines Physical Geology, 14/e Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Plummer, Carlson &
Ch 16 The Dynamic Ocean.
Marine Physics Chapters 8, 9, 10 JUST COPY WHAT IS UNDERLINED!!!!!!
Movements of the Oceans
The Story Of Waves Waves Caused by: Wind Wind Earthquakes Earthquakes Gravitational force of the Moon and Sun. Gravitational force of the Moon and Sun.
EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 
Friday April 8, 2011 (Shoreline Features; Stabilizing the Shore; Coastal Classification)
THE DYNAMIC OCEAN Earth Science 11/9/ Ocean Circulation #1- Surface Circulation- – Surface currents- movements of water that flow horizontally.
EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 
Tuesday March 27, 2012 (The Coastal Zone and Waves)
1. Cape Hatteras, NC 2  What is the force that drives the ocean’s currents? What is the basic pattern of surface currents?  How do surface ocean currents.
Starter Complete the # 5-8 on page 4 of the sheet entitled, “Standardized Test Prep”. Answer all questions to the best of your ability. You may write on.
Complete the #1-5 on page 3 of the sheet entitled, “Standardized Test Prep”. Answer all questions to the best of your ability. You may write on this sheet.
EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 
EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 
EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 
Warm Up 1)Which of the following is a tidal current? a. spring tidec. neap tide b. flood tided. both a and c 2)The smallest daily tidal range occurs during.
Processes Affecting Beaches Waves, Currents and Tides.
Wave Erosion.
DYNAMIC OCEAN Chapter 16. SURFACE CIRCULATION  Surface currents  Move horizontally on the upper surface of the ocean  Wind blowing across the surface.
The Dynamic Ocean. Currents Ocean current is the mass of ocean water that flows from one place to another. Surface currents are movements of water that.
Currents. Surface currents – Develop from friction between the ocean and the wind that blows across the ocean surface – 2 Types: warm and cold.
Chapter 10 THE RESTLESS OCEAN Dr. Masdouq Al-Taj
Powerpoint Presentation Earth: An Introduction to Physical Geology, 7e
…and Shoreline Development
Shoreline Features and Processes
Shorelines.
CH 16 The Dynamic Ocean Ocean water is in constant motion and powered by many forces Forces include wind, Coriolis, gravity, density differences Ocean.
The Dynamic Ocean Earth Science Ch. 16.
Waves and the Shore.
16.3 – Shoreline Processes and Features
13 The Composition of Seawater
Ocean Motion.
Shoreline Features.
The Dynamic Ocean.
The Restless Ocean.
Prentice Hall EARTH SCIENCE
WARM UP 10/30/14 What is Upwelling?
Presentation transcript:

Chapter 10 The Restless Ocean

Ocean Water Movements Surface circulation Ocean currents are masses of water that flow from one place to another Surface currents develop from friction between the ocean and the wind that blows across the surface Huge, slowly moving gyres

Ocean Water Movements Surface circulation Five main gyres (all subtropical gyres) North Pacific gyre South Pacific gyre North Atlantic gyre South Atlantic gyre Indian Ocean gyre Related to atmospheric circulation Monsoons-seasonal windshifts

Average Ocean Surface Currents in February–March Figure 10.2

Ocean Water Movements Surface circulation Deflected by the Coriolis effect To the right in the Northern Hemisphere To the left in the Southern Hemisphere Four main currents generally exist within each gyre (pole ward moving currents are warm) Importance of surface currents Climate Currents from low latitudes into higher latitudes (warm currents) transfer heat from warmer to cooler areas, most noticed in the middle latitudes during winter.

Ocean Water Movements Surface circulation Importance of surface currents Climate Influence of cold currents is most pronounced in the tropics or during the summer months in the middle latitudes Maintains Earth’s heat balance Upwelling The rising of cold water from deeper layers Most common along west coast of continents (coastal upwelling) Nutrient rich water from below is added to surface water

Ocean Water Movements Deep-ocean circulation A response to density differences Factors creating a dense mass of water Temperature—Cold water is dense (sea ice causes unfrozen water to be saltier) Salinity—Density increases with increasing salinity Called thermohaline circulation

Ocean Water Movements Deep-ocean circulation Most water involved in deep-ocean currents begins in high latitudes at the surface A simplified model of ocean circulation is similar to a conveyor belt that travels from the Atlantic Ocean, through the Indian and Pacific Oceans, and back again

Idealized “Conveyor Belt” Model of Ocean Circulation Figure 10.6

Waves Waves Energy traveling along the interface between ocean and atmosphere Derive their energy and motion from wind Parts Crest Trough

Waves Waves Characteristics Wave height—The distance between a trough and a crest Wavelength—The horizontal distance between successive crests (or troughs) Wave period—The time interval for one full wave to pass a fixed position Waves begin to feel bottom at a water depth that is equal to one half the wavelength

Characteristics and Movement of Waves Figure 10.7

Ocean Water Movements Waves Wave height, length, and period depend on Wind speed Length of time the wind blows Fetch—The distance that the wind travels across open water waves in the open ocean are called waves of oscillation water particles move in an almost circular path the wave form moves forward but the water particles do not advance appreciably

Changes That Occur When a Wave Moves onto Shore Figure 10.9

Beaches and Shoreline Processes Beaches are composed of whatever material is available Some beaches have a significant biological component Material does not stay in one place Wave erosion Caused by Wave impact , air compression, abrasion Breaks down rock material and supplies sand to beaches

Beaches and Shoreline Processes Wave refraction Bending of a waves Wave arrives more parallel to shore Results of wave refraction Wave energy is concentrated against the sides and ends of the headland Wave erosion straightens an irregular shoreline

Wave Refraction Along an Irregular Coastline Figure 10.12

Beaches and Shoreline Processes Longshore transport Beach drift—Sediment moves in a zigzag pattern along the beach face, caused by obliquely breaking waves Longshore current Current in surf zone Flows parallel to the shore Moves substantially more sediment than beach drift

Beach Drift and Longshore Currents Figure 10.13

Shoreline Features Erosional features Wave-cut cliff Wave-cut platform Marine terraces Associated with headlands Sea Cave Sea arch Sea stack-an isolated remnant of wave erosion

Sea Arch Figure 10.18

Sea Stack

Shoreline Features Depositional features Spit —A ridge of sand extending from the land into the mouth of an adjacent bay with an end that often hooks landward Baymouth bar —A sand bar that completely crosses a bay Tombolo—A ridge of sand that connects an island to the mainland

Aerial View of a Spit and Baymouth Bar Along the Massachusetts Coastline Figure 10.16

Spit Figure 10.18

Baymouth Bar

Tombolo Figure 10.18

Shoreline Features Depositional features Barrier islands Beaches Mainly along the Atlantic and Gulf Coastal Plains Parallel the coast Originate in several ways Beaches

Stabilizing the Shore Shoreline erosion is influenced by the local factors Proximity to sediment-laden rivers Degree of tectonic activity Topography and composition of the land Prevailing wind and weather patterns Configuration of the coastline

Stabilizing the Shore Responses to erosion problems Hard stabilization—Building structures Types of structures Groins —Barriers built at a right angle to the beach that are designed to trap sand Breakwaters—Barriers built offshore and parallel to the coast to protect boats from breaking waves

Stabilizing the Shore Responses to erosion problems Hard stabilization—Building structures Types of structures Seawalls—Armors the coast against the force of breaking waves Often these structures are not effective

Stabilizing the Shore Responses to erosion problems Alternatives to hard stabilization Beach nourishment by adding sand to the beach system Relocating buildings away from beach Erosion problems along U.S. Coasts Shoreline erosion problems are different along the opposite coasts

Miami Beach Before Beach Nourishment Figure 10.22

Miami Beach After Beach Nourishment Figure 10.22

Stabilizing the Shore Erosion problems along U.S. Coasts Atlantic and Gulf Coasts Development occurs mainly on barrier islands Face open ocean Receive full force of storms Development has taken place more rapidly than our understanding of barrier island dynamics

Stabilizing the Shore Erosion problems along U.S. Coasts Pacific Coast Characterized by relatively narrow beaches backed by steep cliffs and mountain ranges Major problem is the narrowing of the beaches Sediment for beaches is interrupted by dams and reservoirs Rapid erosion occurs along the beaches ex. sea cliffs

Coastal Classification Shoreline classification is difficult Classification based on changes with respect to sea level Emergent coast Caused by Uplift of the land, or A drop in sea level Features include elevated wavecut platforms.

Coastal Classification Classification based on changes with respect to sea level Submergent coast Caused by Land adjacent to sea subsides, or Sea level rises Features of a submergent coast Highly irregular shoreline Estuaries —Drowned river mouths

Major Estuaries Along the East Coast of the United States Figure 10.23

Tides Changes in elevation of the ocean surface Caused by the gravitational forces exerted upon the Earth by the Moon, and to a lesser extent by the Sun

Idealized Tidal Bulges on Earth Figure 10.25

Tides Monthly tidal cycle Spring tide During new and full moons Gravitational forces added together Especially high and low tides Large daily tidal range

Earth-Moon-Sun Positions During the Spring Tide Figure 10.26 A

Earth-Moon-Sun Positions During the Neap Tide Figure 10.26 B

Tides Monthly tidal cycle Tidal patterns Neap tide First and third quarters of the Moon Gravitational forces are offset Daily tidal range is least Tidal patterns Many factors influence the tides Shape of the coastline Configuration of the ocean basin Water depth

Tides Tidal patterns Main tidal patterns Diurnal tidal pattern A single high and low tide each tidal day Occurs along the northern shore of the Gulf of Mexico Semidiurnal tidal pattern Two high and two low tides each tidal day Little difference in the high and low water heights

Tides Tidal patterns Main tidal patterns Mixed tidal pattern Two high and two low waters each day Large inequality in high water heights, low water heights, or both Prevalent along the Pacific Coast of the United States

Tides Tidal currents Horizontal flow accompanying the rise and fall of tides Types of tidal currents Flood current—Advances into the coastal zone Ebb current—Seaward moving water Sometimes tidal deltas are created by tidal currents

Features Associated with Tidal Currents Figure 10.28

End of Chapter 10