Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.

Slides:



Advertisements
Similar presentations
“Rotational Energy Transfer in o - / p -H 2 + HD” Renat A. Sultanov and Dennis Guster BCRL, St. Cloud State University St. Cloud, MN June 20, 2007 OSU.
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Hyperfine-Changing Collisions of Cold Molecules J. Aldegunde, Piotr Żuchowski and Jeremy M. Hutson University of Durham EuroQUAM meeting Durham 18th April.
Bare Surface Tension and Surface Fluctuations of Clusters with Long–Range Interaction D.I. Zhukhovitskii Joint Institute for High Temperatures, RAS.
The University of Tokyo
H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Super - Radiance, Collectivity and Chaos in the Continuum Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Workshop on Level Density.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Making cold molecules from cold atoms
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
MQDT analysis James Millen. Introduction MQDT analysis – Group meeting 13/09/10 In our experiment we measure the population of Rydberg states using autoionization.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Theory of vibrationally inelastic electron transport through molecular bridges Martin Čížek Charles University Prague Michael Thoss, Wolfgang Domcke Technical.
The R-matrix method and 12 C(  ) 16 O Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium 1.Introduction 2.The R-matrix formulation:
Guillermina Ramirez San Juan
Cold Atomic and Molecular Collisions
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic.
INTRODUCTION TO PHYSICS OF ULTRACOLD COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 14 February 2008 Institute for.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Nicolas Michel CEA / IRFU / SPhN Shell Model approach for two-proton radioactivity Nicolas Michel (CEA / IRFU / SPhN) Marek Ploszajczak (GANIL) Jimmy Rotureau.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Progress Towards Formation and Spectroscopy of Ultracold Ground-state Rb 2 Molecules in an Optical Trap H.K. Pechkis, M. Bellos, J. RayMajumder, R. Carollo,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Maykel L. González-Martínez ultracold temperatures October 3 th, Bordeaux.
Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico –
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Two particle states in a finite volume and the multi-channel S- matrix elements Chuan Liu in collaboration with S. He, X. Feng Institute of Theoretical.
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Scales of critically stable few-body halo system Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil  Marcelo T. Yamashita.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Application of the operator product expansion and sum rules to the study of the single-particle spectral density of the unitary Fermi gas Seminar at Yonsei.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Collaborators: Bugra Borasoy – Bonn Univ. Thomas Schaefer – North Carolina State U. University of Kentucky CCS Seminar, March 2005 Neutron Matter on the.
An atomic Fermi gas near a p-wave Feshbach resonance
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Adiabatic hyperspherical study of triatomic helium systems
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Agenda Brief overview of dilute ultra-cold gases
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Maykel L. González-Martínez Laurent Bonnet and Pascal Larrégaray Statistical Product-State Distributions for Cold Exoergic Reactions in External Fields.
Deterministic preparation and control of a few fermion system.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
Magnetization dynamics in dipolar chromium BECs
Making cold molecules from cold atoms
物 理 化 學 Physical Chemistry matter logic change study origin
Zhejiang Normal University
Presentation transcript:

Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM satellite meeting, University of Durham, April 18, 2009 Collaborators (theory) Tom Hanna, Eite Tiesinga (NIST) Thanks also to Bo Gao (U. of Toledo) and Cheng Chin (U. Chicago) J. K. Freericks (Georgetown U.), M. Maśka (U. Silesia), R. Lemański (Wroclaw)

Outline 1.Sone general considerations 2. The significance of the long-range potential , Feshbach review , Book chapter , MQDT treatment LiK, KRb 3. Long-range potential + quantum defect theory for atom-atom collisions Can we get simple, practical models?

Surface of sun Room temperature Liquid He Laser cooled atoms (Bosons or Fermions) Interior of sun Optical lattice bands Quantum gases 1 pK 1 nK 1  K 1 mK 1 K 1000 K 10 6 K 10 9 K E/k B E/h 1 MHz 1 GHz 1 THz 1 kHz 1 Hz

Ultracold polar molecules are now with us 1. Atom preparation 3. Population transfer STIRAP 2. Atom Association weakly bound pair 100 kHz 100 THz 4. Polar molecules Dipolar gases, lattices Kohler et al, Rev. Mod. Phys. 78, 1311 (2006) Chin, et al, arXiv:

Long range -C 6 /R 6 Analytic long-range theory (B. Gao) a _ eV Separated atoms Properties of separated species “simple” eV (1  K) A+B Y 1 eV AB “Core” independent of E ≈ 0 Short range  (E) scattering phase (E) bound state phase (E i )=n  at eigenvalue

Resonance scattering S-matrix theory of molecular collisions F. H. Mies, J. Chem. Phys. 51, 787, 798 (1969) where Q T = translational partition function  T = thermal de Broglie wavelength of pair Replace for elastic collisions Phase Space density Time scale Dynamics

Adapted from Gao, Phys. Rev. A 62, (2000); Figure from FB review Bound states from van der Waals theory

Spectrum of van der Waals potential Adapted from Fig. 8 Chin, Grimm, Julienne, Tiesinga, “Feshbach Resonances in Ultracold Gases”, submitted to Rev. Mod. Phys. arXiv: Singlet Triplet Blue lines: a = ∞ 40 K 87 Rb

-0.41 GHz GHz GHz

-3.00 GHz GHz

Goal: Simple, reliable model for classification and calculation * Now: Full quantum dynamics with CC calculations All degrees of freedom with real potentials Exact, but not simple * vdW-MQDT: Reduction to a simpler representation Parameterized by C 6 van der Waals coefficient  reduced mass a bg “background” scattering length  resonance width B 0 singularity in a(B)  magnetic moment difference vdW Energy scale

Analytic properties of  (R,E) across thresholds (E) and between short and long range (R) Analytic solutions for -C 6 /R 6 van der Waals potential B. Gao, Phys. Rev. A 58, 1728, 4222 (1998) Also 1999, 2000, 2001, 2004, 2005 Solely a function of C 6, reduced mass , and scattering length a Generalized Multichannel Quantum Defect Theory (MQDT): F. H. Mies, J. Chem. Phys. 80, 2514 (1984) F. H. Mies and P. S. Julienne, J. Chem. Phys. 80, 2526 (1984) Ultracold: Eindhoven (Verhaar group), JILA (Greene, Bohn) P. S. Julienne and F. H. Mies, J. Opt. Soc. Am. B 6, 2257 (1989) F. H. Mies and M. Raoult, Phys. Rev. A 62, (2000) P. S. Julienne and B. Gao, in Atomic Physics 20, ed. by C. Roos, H. Haffner, and R. Blatt (2006) (physics/ ) Use vdW solutions for MQDT analysis

For coupled channels case Given the reference the single-channel functions: for scattering (E>0)  (E), C(E), tan (E) and bound states (E<0) (E) MQDT theory (1984) gives coupled channels S-matrix and bound states. From vdW theory, given C 6, , a Assume a single isolated resonance weakly coupled to the continuum Y c,bg <<1, Y cc = -Y bg,bg = 0 Bound states Scattering states

Van der Waals MQDT bound state equation Use Gives for binding energy when Solution as k b --> 0 with

Classification of resonances by strength, arXiv: For magnetically tunable resonances: Bound state norm Z as E → 0 Bound state E=0 shifts toResonance strength See Kohler et al, Rev. Mod. Phys. 78, 1311 (2006)

Closed channel dominated Entrance channel dominated “Broad” “Narrow”

B (Gauss) 6 Li ab E/k B (mK) B (Gauss) Li aa Closed channel dominated Entrance channel dominated Color: sin 2  (E)

Two-channel “box” model Corresponds to vdW MQDT when “box” width is chosen to be Bound state equation for level with binding energy with

Bound state E and Z for selected resonances Points: coupled channels Lines: box model Closed-channel character Energy

Can we get simple models for bound and scattering states? Use vdW solutions for MQDT treatment Ingredients: Atomic hyperfine/Zeeman properties Atomic-molecule basis set frame transformation Van der Waals coefficient C 6 S, T scattering lengths arXiv: Fit 9 s-wave measured resonances in 6 Li 40 K from To about 2 per cent accuracy (3 G) E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, et al., Phys. Rev. Lett. 100, (2008). 3 AND ONLY 3 free parameters

40 K 87 Rb aa resonances

n=-2

n = -3 A(-1) D(-3) B(-2)

Ion-atom MQDT elastic and radiative charge transfer Na + Ca + Ion-atom -C 4 /R 4 : Idziaszek, et al., Phys. Rev. A 79, (2009) Model calculation only (no real Potentials)

A+B Long range Asymptotic Cold species prepared Chemistry Scatter off long-range potential Assume unit probability of inelastic event at small R “Universal” van der Waals inelasticity Lost Reflect Transmit Reflect

“Universal” van der Waals model Applied to RbCs molecular quenching by Hudson, Gilfoy, Kotochigova, Sage, and De Mille, Phys. Rev. Lett. 100, (2008)