Grand Unified Theory, Running Coupling Constants and the Story of our Universe These next theories are in a less rigorous state and we shall talk about.

Slides:



Advertisements
Similar presentations
Higgs physics theory aspects experimental approaches Monika Jurcovicova Department of Nuclear Physics, Comenius University Bratislava H f ~ m f.
Advertisements

The search for the God Particle
The Standard Model and Beyond [Secs 17.1 Dunlap].
Physics 357/457 Spring 2014 Summary
Lecture 10: Standard Model Lagrangian The Standard Model Lagrangian is obtained by imposing three local gauge invariances on the quark and lepton field.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
The Big Bang Necessary? –Expansion of the Universe –Origin of CMBR 400 photons/cc Black body temperature profile –Helium content Universal nucleosynthesis.
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1 W 1 +  2 W 2 +  3 W 3.
Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy SCHEDULE  5-Feb pm Physics LRA Dr M Burleigh Intro lecture  9-Feb-04.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
History of the Universe - according to the standard big bang
Smashing the Standard Model: Physics at the CERN LHC
The Ideas of Unified Theories of Physics Tareq Ahmed Mokhiemer PHYS441 Student.
Schlüsselexperimente der Elementarteilchenphysik:.
Supersymmetry in Particle Physics
Modern Physics LECTURE II.
Chapter 29 Exploring the Early Universe. Guiding Questions 1.Has the universe always expanded as it does today? 2.What is antimatter? How can it be created,
The Higgs boson and its mass. LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12.
Astro-2: History of the Universe Lecture 11; May
Non-minimal inflation and SUSY GUTs Nobuchika Okada University of Alabama International Workshop on Grand Unification Yukawa Institute of Theoretical Physics.
Higgs inflation in minimal supersymmetric SU(5) GUT Nobuchika Okada University of Alabama, Tuscaloosa, AL In collaboration with Masato Arai & Shinsuke.
Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy SCHEDULE 26-Jan pm LRB Intro lecture 28-Jan pm LRBProblem solving.
Monday, Apr. 2, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #12, 13, 14 Monday, Apr. 2, 2007 Dr. Jae Yu 1.Local Gauge Invariance 2.U(1) Gauge.
Discovery of the Higgs Boson Gavin Lawes Department of Physics and Astronomy.
Electroweak interaction
ROY, D. (2011). Why Large Hadron Collider?. Pramana: Journal Of Physics, 76(5), doi: /s
My Chapter 30 Lecture.
Center for theoretical Physics at BUE
The Dark Side of the Universe What is dark matter? Who cares?
August 22, 2002UCI Quarknet The Higgs Particle Sarah D. Johnson University of La Verne August 22, 2002.
Electroweak Theory Mr. Gabriel Pendas Dr. Susan Blessing.
Exploring the Early Universe Chapter Twenty-Nine.
Intro to Cosmology! OR What is our Universe?. The Latest High Resolution Image of the Cosmic Microwave Background Radiation Low Energy RegionHigh Energy.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Elementary particles and their forces -- how can we understand them and what do they imply about our early universe? Barbara Hale Physics Department Missouri.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 30: Particle Physics Fundamental.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
PHY th century cosmology 1920s – 1990s (from Friedmann to Freedman)  theoretical technology available, but no data  20 th century: birth of observational.
Theoretical Issues in Astro Particle Physics J.W. van Holten April 26, 2004.
The Life of the Universe From Beginning to End.
Anthropology Series In the Beginning How did the Universe begin? Don’t know!
Lecture 6 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AA.
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
weak decays beta decay ofneutron problem energy and momentum not conserved e n p.
STANDARD MODEL class of “High Energy Physics Phenomenology” Mikhail Yurov Kyungpook National University November 15 th.
Lecture 2: The First Second Baryogenisis: origin of neutrons and protons Hot Big Bang Expanding and cooling “Pair Soup” free particle + anti-particle pairs.
Phys 102 – Lecture 28 Life, the universe, and everything 1.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Compelling Scientific Questions The International Linear Collider will answer key questions about matter, energy, space and time We now sample some of.
Monday, Mar. 10, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #14 Monday, Mar. 10, 2003 Dr. Jae Yu Completion of U(1) Gauge Invariance SU(2)
The Search For Supersymmetry Liam Malone and Matthew French.
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
The Standard Model of the elementary particles and their interactions
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
Physics 222 UCSD/225b UCSB Lecture 12 Chapter 15: The Standard Model of EWK Interactions A large part of today’s lecture is review of what we have already.
PHYS 3446 – Lecture #23 Symmetries Why do we care about the symmetry?
Introduction to the Standard Model
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1W1+  2W2 +  3W3.
Reference: “The Standard Model Higgs Boson” by Ivo van Vulpen,
Lecture 10: Standard Model Lagrangian
Grand Unified Theory, Running Coupling Constants and the Story of our Universe These next theories are in a less rigorous state and we shall talk about.
PHYS 5326 – Lecture #19 Wrapping up the Higgs Mechanism
The symmetry of interactions
The MESSM The Minimal Exceptional Supersymmetric Standard Model
The Thermal History of the Universe
Ichep.
Introduction to Particle Physics
Lecture 12 Chapter 15: The Standard Model of EWK Interactions
Presentation transcript:

Grand Unified Theory, Running Coupling Constants and the Story of our Universe These next theories are in a less rigorous state and we shall talk about them, keeping in mind that they are at the ‘”edge” of what is understood today. Nevertheless, they represent a qualitative view of our universe, from the perspective of particle physics and cosmology. GUT -- Grand Unified Theories – symmetry between quarks and leptons; decay of the proton. Running coupling constants: it’s possible that at one time in the development of the universe all the forces had the same strength The Early Universe: a big bang, cooling and expanding, phase transitions and broken symmetries

We have incorporated into the Lagrangian density invariance under rotations in U(1)XSU(2) flavor space and SU(3) color space, but these were not really unified. That is, the gauge bosons, (photon, W, and Z, and gluons) were not manifestations of the same force field. If one were to “unify” these fields, how might it occur? The attempts to do so are called Grand Unified Theories. Grand Unified Theory (GUT ) GUT includes invariance under U(1) X SU(2) flavor space and SU(3) color and invariance under the following transformations: quarks  leptons leptons  quarks

Grand Unified Theory - SU(5) 8 gluons (W 0 +B) W+W+ W-W- 24 Gauge bosons SU(5) m x  GeV SU(5) gau For symmetry under SU(5), the x and y particles must be massless! Quarks & leptons in same multiplet Left handed d red d green d blue L Georgii & Glashow, Phys. Rev Lett. 32, 438 (1974). ; Gauge invariance e -i  (x,y,t)  L SU(5) is invariant under e - -  rgbrgb

> years So far, there is no evidence that the proton decays. But note that the lifetime of the universe is 14 billion years. The probability of detecting a decaying proton depends a large sample of protons! D  =   - i g 5 /2  j=1,24 j X i where X i = the 24 gauge bosons SU(5) generators and covariant derivative a) q up = 2/3 ; q d = -1/3 b) sin 2  W  0.23 c) the proton decays! d) baryon number not conserved e) only one coupling constant, g 5 (g 1, g 2, and g 3, are related) Predictions: The = 24 generators of SU(5) are the i 24 components :  i (x,y,t) =  i (x,y,t) has all real, continuous functions 5x5 matrices which do not commute. SU(5) is a non-abelian local gauge theory. This includes the Standard Model covariant derivative ( couplings are different).

“Particle Physics and Cosmology”, P.D. B. Collins, A. D. Martin and E. J. Squires, Wiley, NY, page 169

X comes in 3 color states with |Q| = 4/3 y comes in 3 color states with |Q| = 1/3 g5g5 BB this matrix _ | _| The term  j =1,2,…,24 j X i /2 can be written: _ | |_. same as SU(3) color same as SU(2) flavor 24

The GUT SU(5) Lagrangian density (1 st generation only) g5g5 Standard Model terms int. SU(5)

+ Note: one coupling constant, g 5 quark to lepton, no color change 3-color vertex 3-color vertex  = 1,2,3 Q = - 4/3 Q= - 1/3 + Hermitian Conjugate (contains X  + and Y  + terms) XX Y Y  Charge conjugation operator T  transpose - -

a great failure of SU(5)!  proton, SU(5)  years -- a great failure for SU(5)

e+e+ e+e+ X -4/3 red d red charge

d red u green u blue X + red e+e+ d red - X red - anti-up blue green blue green X +red proton 0 Decay of proton in SU(5) 3-color vertex

SUPER SYMMETRIC (SUSY) THEORIES: Supergravity SUSYs contain invariance of the Lagrangian density under operations which change bosons (spin = 01,2,..) fermions (spin = ½, 3/2 …). SUSY  unifies E&M, weak, strong (SU(3) and gravity fields. usually includes invariance under local transformations

Supersymmetric String Theories Elementary particles are one-dimensional strings: closed strings open strings L = 2  r L = cm. = Planck Length M planck  GeV/c 2 or See Schwarz, Physics Today, November 1987, p. 33 “Superstrings”.no free parameters The Planck Mass is approximately that mass whose gravitational potential is the same strength as the strong QCD force at r  cm. An alternate definition is the mass of the Planck Particle, a hypothetical miniscule black hole whose Schwarzchild radius is equal to the Planck Length.

A quick way to estimate the Planck mass is as follows: g strong ℏ c /r = GM p M p /r where r = cm (strong force range) and g strong = 1 M p = [g strong ℏ c/G] 1/2 = 1.3 x m proton M Planck  GeV/c 2

Particle Physics and the Development of the Universe Very early universe All ideas concerning the very early universe are speculative. As of early today, no accelerator experiments probe energies of sufficient magnitude to provide any experimental insight into the behavior of matter at the energy levels that prevailed during this period. Planck epoch Up to 10 – 43 seconds after the Big Bang At the energy levels that prevailed during the Planck epoch the four fundamental forces— electromagnetism U(1), gravitation, weak SU(2), and the strong SU(3) color — are assumed to all have the same strength, and “unified” in one fundamental force. Little is known about this epoch. Theories of supergravity/ supersymmetry, such as string theory, are candidates for describing this era.

Grand unification epoch: GUT Between 10 –43 seconds and 10 –36 seconds after the Big Bang T he universe expands and cools from the Planck epoch. After about 10 –43 seconds the gravitational interactions are no longer unified with the electromagnetic U(1), weak SU(2), and the strong SU(3) color interactions. Supersymmetry/Supergravity symmetires are roken. After 10 –43 seconds the universe enters the Grand Unified Theory (GUT) epoch. A candidate for GUT is SU(5) symmetry. In this realm the proton can decay, quarks are changed into leptons and all the gauge particles (X,Y, W, Z, gluons and photons), quarks and leptons are massless. The strong, weak and electromagnetic fields are unified.

Running Coupling Constants GUT electroweak Electro- Weak Symmetry breaking Planck region SU(3) Electro weak unification GeV Super- symmetry

Inflation and Spontaneous Symmetry Breaking. At about 10 –36 seconds and an average thermal energy kT  GeV, a phase transition is believed to have taken place. In this phase transition, the vacuum state undergoes spontaneous symmetry breaking. Spontaneous symmetry breaking: Consider a system in which all the spins can be up, or all can be down – with each configuration having the same energy. There is perfect symmetry between the two states and one could, in theory, transform the system from one state to the other without altering the energy. But, when the system actually selects a configuration where all the spins are up, the symmetry is “spontaneously” broken.

When the phase transition takes place the vacuum state transforms into a Higgs particle (with mass) and so-called Goldstone bosons with no mass. The Goldstone bosons “give up” their mass to the gauge particles (X and Y gain masses  GeV). The Higgs keeps its mass (  the thermal energy of the universe, kT  GeV). This Higgs particle has too large a mass to be seen in accelerators. Higgs Mechanism What causes the inflation? The universe “falls into” a low energy state, oscillates about the minimum (giving rise to the masses) and then expands rapidly. When the phase transition takes place, latent heat (energy) is released. The X and Y decay into ordinary particles, giving off energy. It is this rapid expansion that results in the inflation and gives rise to the “flat” and homogeneous universe we observe today. The expansion is exponential in time.

Schematic of Inflation T (GeV/k) R(t) m T=2.7K R  t 1/2 T  t -1/2 R  e Ht R  t 2/3 T  t -2/ time (sec)

Electroweak epoch Between 10 –36 seconds and 10 –12 seconds after the Big Bang The SU(3) color force is no longer unified with the U(1)x SU(2) weak force. The only surviving symmetries are: SU(3) separately, and U(1)X SU(2). The W and Z are massless. A second phase transition takes place at about 10 –12 seconds at kT = 100 GeV. In this phase transition, a second Higgs particle is generated with mass close to 100 GeV; the Goldstone bosons give up their mass to the W, Z and the particles (quarks and leptons). It is the search for this second Higgs particle that is taking place in the particle accelerators at the present time.

After the Big Bang: the first Seconds. GUTSU(2) x U(1) symmetry Planck Era gravity decouples SUSY Supergravity inflation X,Y take on mass W , Z 0 take on mass.. all forces unified bosons  fermions quarks  leptons all particles massless

..... COBE data 2.7K Standard Model W , Z 0 take on mass.. n, p formed nuclei formed atoms formed 100Gev only gluons and photons are massless

Field theoretic treatment of the Higgs mechanism One can incorporate the Higgs mechanism into the Lagrangian density by including scalar fields for the vacuum state. When the scalar fields undergo a gauge transformation, they generate the particle masses. The Lagrangian density is then no longer gauge invariant. The symmetry is broken.