Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, 1402.6815[hep-ph]

Slides:



Advertisements
Similar presentations
Dark Matter Masaki Asano (Tohoku U.) Collaborators: Keisuke Fujii (KEK) Katsumasa Ikematsu (KEK) Rei Sasaki (Tohoku U.) Taikan Suehara (ICEPP, U. of Tokyo)
Advertisements

SUSY and other BSM physics with CMS
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Fourth Generation Leptons Linda Carpenter UC Irvine Dec 2010.
Neutralino Dark Matter in Light Higgs Boson Scenario Masaki Asano (ICRR, University of Tokyo) Collaborator S. Matsumoto (Toyama Univ.) M. Senami (Kyoto.
Going after the Dark at Colliders David Berge (CERN)
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Little Higgs Model Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) KIAS-NCTS Joint Workshop High-1 2/9 – 2/15 In collaboration.
Jose E. Garcia presented by: Jose E. Garcia (IFIC-Valencia) on behalf of ATLAS Collaboration XXXIXth Rencontres de Moriond.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
Paris 22/4 UED Albert De Roeck (CERN) 1 Identifying Universal Extra Dimensions at CLIC  Minimal UED model  CLIC experimentation  UED signals & Measurements.
Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous.
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
Associated production of the Higgs boson and a single top quark in the littlest Higgs model at Large Hadron Collier Shuo Yang.
Physics Session Summary Nobuchika Okada Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) TILC09, Tsukuba,
Little Higgs Dark Matter & Its Collider Signals ・ E. Asakawa, M. Asano, K. Fujii, T. Kusano, S. M., R. Sasaki, Y. Takubo, and H. Yamamoto, PRD 79, 2009.
Tension Between A Fourth Generation And The LHC Higgs Searches Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
Takehiro Nabeshima University of Toyama ILC physics general meeting 9 jun Phenomenology at a linear collider in a radiative seesaw model from TeV.
Masato Yamanaka (Saitama University) collaborators Shigeki Matsumoto Joe Sato Masato Senami arXiv: [hep-ph]Phys.Lett.B647: and Relic abundance.
USTROŃ Maria Krawczyk University of Warsaw I. Ginzburg, K. Kanishev (Novosibirsk University), D.Sokołowska (University of Warsaw) 2HDMs.
By Mengqing Wu XXXV Physics in Collision September 15-19, 2015 University of Warwick Dark matter searches with the ATLAS detector.
Masato Yamanaka (Tokyo university, ICRR) Collaborators Shigeki Matsumoto Joe Sato Masato Senami PHYSICAL REVIEW D 80, (2009)
1 Determination of Dark Matter Properties in the Littlest Higgs Model with T-parity Masaki Asano (SOKENDAI) Collaborator: E. Asakawa (Meiji-gakuin), S.
Yoshitaro Takaesu U. of Tokyo LHC limits on the Higgs-portal WIMPs arXiv: in collaboration with M. Endo (U.Tokyo)
Report on LHT at the LHC ~ Some results from simulation study ~ Shigeki Matsumoto (Univ. of Toyama) 1.What kinds of LHT signals are expected, and how accurately.
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
Report on New Physics Subgroup Activities Nobuchika Okada (KEK) 5th general meeting of the ILC physics working group May 31, KEK Past activities.
Nobuchika Okada The University of Alabama Miami 2015, Fort Lauderdale, Dec , GeV Higgs Boson mass from 5D gauge-Higgs unification In collaboration.
Flavour independent neutral Higgs boson searches at LEP Ivo van Vulpen NIKHEF On behalf of the LEP collaborations EPS conference 2005.
Higgs boson production at LHC as a probe of littlest Higgs models with T-parity Lei Wang ITP LW, J. M. Yang, PRD77, (2008)
Same-Sign Diletpon Signatures of Vector-like Quarks Chuan-Ren Chen (NTNU) 11/03/2015, CYCU HEP seminar In collaboration with H.-C. Cheng and I. Low, 1511.*****
Masato Yamanaka (Saitama University) collaborators Shigeki Matsumoto Joe Sato Masato Senami Phys.Rev.D76:043528,2007Phys.Lett.B647: and Universal.
WIN 05, Delphi, Greece, June 2005Filip Moortgat, CERN WIN 05 Inclusive signatures: discovery, fast but not unambiguous Exclusive final states & long term.
Same-Sign Diletpon Signatures of Vector-like Quarks Chuan-Ren Chen (NTNU) 11/20/2015, IoP HEP AS In collaboration with H.-C. Cheng and I. Low,
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
Dirac neutrino dark matter G. Bélanger LAPTH- Annecy based on G. B, A.Pukhov, G. Servant CERN-PH-TH/
Measurements of the model parameter in the Littlest Higgs Model with T-parity 1 Masaki Asano (ICRR, Univ. of Tokyo) Collaborator: E. Asakawa ( Meiji-gakuin.
Measurements of the model parameter in the Littlest Higgs model with T-parity 1 Masaki Asano (ICRR, Univ. of Tokyo) Collaborator: E. Asakawa ( Meiji-gakuin.
Report on model separation Masaki Asano (Tohoku U.) The 12th general meeting of the ILC physics working group.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
Same-Sign Diletpon Signatures of Vector-like Quarks Chuan-Ren Chen (NTNU) 12/10/2015, NCTS Annual Theory Meeting In collaboration with H.-C. Cheng and.
Lei Wu arXiv: JHEP 1402 (2014) 049 In collaboration with: C. Han, A. Kobakhidze, N. Liu, A. Saavedra and J.M. Yang Light Higgsinos and Naturalness.
Xenon100 collaboration gives a stringent constraint on spin-independent elastic WIMP-nucleon scattering cross section. Ton-scale detectors for direct detection.
We have the Higgs!!! Now What?? Nausheen R. Shah Wayne State University Oct 14, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner arXiv:1510.xxxxx.
Fourth Generation Leptons Linda Carpenter April 2011.
The study of q q production at LHC in the l l channel and sensitivity to other models Michihisa Takeuchi ~~ LL ± ± (hep-ph/ ) Kyoto Univ. (YITP),
The Case of Light Neutralino Dark Matter
Journées de Prospective
Direct Detection of Vector Dark Matter
Generating Neutrino Mass & Electroweak Scale Radiatively
Focus-Point studies at LHC
Dark Sectors for and anomalies
Phenomenology of Twin Higgs Model
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
Not-SUSY-Nor-Higgs Exotic Searches at TeVatron Run II
Some Implications Of The Recent LHC Higgs Search Results Xiao-Gang He (SJTU&NTU) Xiao-Gang He and German Valencia, arXiv: Xiao-Gang He and.
Phenomenology of Twin Higgs Model
Phenomenology of Twin Higgs Model
The Graduate University for Advanced Studies Masaki Asano hep-ph/
Phenomenology of Twin Higgs Model
Physics at a Linear Collider
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
Probing bino-wino coannihilation DM at the LHC
SUSY SEARCHES WITH ATLAS
Dark Matter Explanation in Singlet Extension of MSSM
Shuo Yang Associated production of the Higgs boson and
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Presentation transcript:

Little Higgs Dark Matter and Its Implications at the LHC Chuan-Ren Chen (NTNU) XS 2014, 5/6/2014 In collaboration with H-C Tsai, M-C Lee, [hep-ph]

Outline CRC (NTNU) 2 LHT BSM EXP, OBS predictions explanations constraints evidences

Higgs boson CRC (NTNU) 3 July 4 CERN Higgs boson is discovered, a significant step for understanding of EWSB!

Naturalness “Problem” CRC (NTNU) 4 Higgs is naturally ~ 200 GeV

CRC (NTNU) 5 e.g. Supersymmetry

Little Higgs Model CRC (NTNU) 6 100, Kaplan…

Littlest Higgs Model CRC (NTNU) 7

8 gauge symmetries are embedded in global SU(5) Littlest Higgs Model kinetic term top sector

Cancellation CRC (NTNU) 9

Little Higgs Model CRC (NTNU) 10

Little Higgs Model w/ T-parity CRC (NTNU) 11

Yukawa Sector CRC (NTNU) 12

Top Sector CRC (NTNU) 13

particle spectrum CRC (NTNU) 14 SM T-parity EvenT-parity Odd * parameters: f, k q, k l, λ 1, m h * The lightest T-odd particle is stable dark matter candidate

EW constraints CRC (NTNU) 15

Unitarity CRC (NTNU) 16 constraining λ ’s Belyaev, CRC, Tobe, Yuan, hep-ph/

T-odd Fermions CRC (NTNU) 17 Cao, CRC,

Higgs Pheno. CRC (NTNU) 18 m h (GeV) gg -> h production is always suppressed CRC, Tobe, Yuan, hep-ph/ t, T +, q -

Higgs Pheno. CRC (NTNU) 19 gg -> h -> γ γ is suppressed CRC, Tobe, Yuan, hep-ph/ Han, Wang, Yang, Zhu,

Dark Matter CRC (NTNU) 20 Some evidences A nonbaryonic, “dark”, charge-neutral object which interacts weakly with normal matters

Dark Matter at LHT CRC (NTNU) 21 two possible candidates: heavy photon, T-odd neutrinos dark matter: T-odd partner of photon T-odd partner of neutrino

Dark Matter & LHT CRC (NTNU) 22 Ωh2Ωh2 can fit relic density data well. XENON100 HOWEVER Direct search of DM excludes >> Planck+WMAP

Dark Matter & LHT CRC (NTNU) 23 two possible candidates: heavy photon, T-odd neutrinos dark matter: T-odd partner of photon T-odd partner of neutrino dark matter:

Dark Matter & LHT CRC (NTNU) 24 M h = 125 GeV solution? Yes, M AH ≳ M h /2 For heavier A H, co-annihilations with T-odd fermions are needed!

co-annihilation w/ T-odd leptons (T-odd quarks are heavy!) CRC (NTNU) 25

w/ light T-odd leptons CRC (NTNU) 26 M h = 125 GeV are so light! LHC should be able to produce lots of them. Planck WMAP-9yrs

light T-odd leptons at LHC 8 TeV CRC (NTNU) 27 f (GeV) dilepton + met lepton + met large production cross section 1 ~ 10 pb met only 100%

arbitrary P t (e) (GeV) CRC (NTNU) 28 dilepton + met dilepton + MET search at LHC: slepton pair or chargino pair in SUSY NO Constraint

MT2 (GeV) arbitrary CRC (NTNU) 29 dilepton + met dilepton + MET search at LHC: NO Constraint slepton pair or chargino pair in SUSY kill all signals

CRC (NTNU) 30 one lepton + MET search at LHC: f (GeV) lepton + met search for W’ one high pt lepton + large MT M T (GeV) M T > 1 TeV kill signal NO constraint from current data

light T-odd leptons at LHC 8 TeV CRC (NTNU) 31 arbitrary P t (e) (GeV) f (GeV) dilepton + met lepton + met met only charged lepton is soft! can contribute mono-jet + met signal at LHC soft direct search is very challenging!

w/ light T-odd leptons CRC (NTNU) 32 M h = 125 GeV Direct search:

co-annihilation w/ T-odd quarks (T-odd leptons are heavy!) CRC (NTNU) 33

CRC (NTNU) 34 w/ light T-odd quarks 3 down-type: 3 up-type: degenerate case inconsistent with stable heavy quark search at colliders However, ∵ ( M t_ - M AH ) < M W < M top top partner ONLY has 4-body decay channel, decay life time is too long!

CRC (NTNU) 35 w/ non-degenerate T-odd quarks projective LUX 2014 can explore M AH up to ~190 GeV, future expts can explore whole parameter space.

CRC (NTNU) 36 arbitrary P t (j) (GeV) HUGE production cross section, jet p T is very soft! light T-odd quarks at the LHC dijet + MET search is very challenging!

CRC (NTNU) 37 light T-odd quarks at the LHC contributes to mono-jet BSM search at LHC. soft

CRC (NTNU) 38 95% C.L. exclusion 2.8 pb 0.16 pb 0.05 pb 0.02 pb f < ~1.4 TeV (M AH < ~ 220 GeV) is DISFAVORED. light T-odd quarks at the LHC allow one other jet > 35 GeV

CRC (NTNU) 39 Summary  With M h = 125 GeV, co-annihilation is needed for heavier (not ~ M h /2) dark matter in LHT model to explain current universe.  In co-annihilation region, T-odd new heavy fermions should be very light, large production cross section at the LHC.  The small mass difference between dark matter and T-odd leptons makes collider search very difficult.  light T-odd top quark partner decays “too late” -> not allowed by collider searches.  mono-jet + MET from light T-odd quarks + 1jet production at the LHC exceed current limit if M AH < 220 GeV.  Future DM direct search exps can explore whole parameter space.

CRC (NTNU) 40 Back UP

Little Hierarchy Problem CRC (NTNU) 41 Effective SM Schmaltz et al, hep-ph/ and references therein New Physics should be larger than 5 TeV tension between 1 TeV and 5 TeV!!

CRC (NTNU) 42

CRC (NTNU) 43

EW constraints CRC (NTNU) 44

CRC (NTNU) 45 “heavy neutrino” can NOT be a dark matter KK neutrino in UED model relic density elastic scattering w/ nuclei ~ 2x10 -3 pb >> pb (current limit) same as SM coupling Servant, Tait, hep-ph/ Servant, Tait, hep-ph/

mono-jet +MET at LHC CRC (NTNU) 46 95% C.L. exclusion 2.8 pb 0.16 pb 0.05 pb 0.02 pb SR3: jet P t > 350 GeV NO constraint from current data

CRC (NTNU) 47 “Solution”

New Particles CRC (NTNU) 48 + SM particles T-parity Even T-parity Odd * parameters: f, k q, k l, λ 1, m h * The lightest T-odd particle is stable dark matter candidate