Simulations of high-z galaxy observations

Slides:



Advertisements
Similar presentations
GEPI, Obs. Paris: F. Hammer, H. Flores, & C. Balkowski LAM : P. Amram MPE, Garching : M. Lehnert Stockholm Obs. : G. Östlin, T. Marquart Galaxy kinematics.
Advertisements

European Southern Observatory European Southern Observatory © ESO 2005 Page 1 AO Department Leiden, April 26th 2005 MUSE M ulti U nit S pectroscopic E.
Ultra-Deep galaxy surveys with the early build-up of galaxies Olivier Le Fèvre With the DIORAMAS team (F, IT, CH, SP)
GLAO instrument specifications and sensitivities
Jeroen Stil Department of Physics & Astronomy University of Calgary Stacking of Radio Surveys.
E-ELT VLT HARMONI – the first light integral field spectrograph for the E-ELT Niranjan Thatte On behalf of the HARMONI consortium Florence - 29 June 2013.
University of Durham Astronomical Instrumentation Group ELT Science Case, Oxford, Report on work done for NIO GSMT book Simon Morris With Cedric.
Integral Field Spectroscopy on Gemini Andrew Bunker (IoA, Cambridge) Euro3D Meeting July 2002 GMOS Gemini Multi-Object Spectrograph, optical IFU (Durham)
1 Palermo nd May Looking ahead to MOONS William Taylor on behalf of the MOONS consortium.
The Galaxy Evolution Science Case for a Large Ground-based Telescope Betsy Gillespie December 4, 2002 Grateful acknowledgements to: Arjun Dey’s “Galaxy.
15 years of science with Chandra– Boston 20141/16 Faint z>4 AGNs in GOODS-S looking for contributors to reionization Giallongo, Grazian, Fiore et al. (Candels.
JWST IFUs and Data Tool Development Plans Tracy Beck JWST NIRSpec Instrument Scientist.
With a wide-field multi-IFU spectrograph.  Clusters provide large samples of galaxies in a moderate field  Unique perspective on the interaction of.
Kinematics/Dynamics  Chemistry/dust  Stellar populations  Searches for z ~ 6-7 « Hot » scientific researches at VLT in cosmology Mass Galaxy formation/gas.
The ELT-MOS (MOSAIC) White Paper Mathieu Puech. ELT-MOS Requirements Workshop in Amsterdam Assembled a science team New science simulations ELT-MOS White.
GEPI, Obs. Paris: F. Hammer, H. Flores, M. Puech & C. Balkowski LAM : P. Amram MPE ==> GEPI : M. Lehnert Stockholm Obs. : G. Ostlin, T. Marquart Galaxy.
Science with SWIFT. The SWIFT Team: Niranjan Thatte, Matthias Tecza, Fraser Clarke, Tim Goodsall, Lisa Fogarty, Graeme Salter, Susan Kassin. Collaborators:
Extragalactic Science Case 1.People who worked on this study 2.Example science cases: – Low redshifts: black hole masses in nearby galaxies – Intermediate.
High Redshift Galaxies: Encircled energy performance budget and IFU spectroscopy Claire Max Sept 14, 2006 NGAO Team Meeting.
Spectral Range and Resolution Huan Lin Fermilab. 2 Wavelengths5500 Å6000 Å10000 Å Emission line redshifts [OII] [OIII]
Plan to develop system requirements through science cases Claire Max Sept 14, 2006 NGAO Team Meeting.
ADASS XVII - September, Software Modelling of IFU Spectrometers Nuria P. F. Lorente UK Astronomy Technology Centre Royal Observatory, Edinburgh,
KMOS Instrument Science Team Review Instrument overview.
Image credit: ESO/NASA/ESA/JPL-Caltech Unveiling the astrophysics of high-redshift galaxy evolution.
Naoyuki Tamura (University of Durham) Expected Performance of FMOS ~ Estimation with Spectrum Simulator ~ Introduction of simulators  Examples of calculations.
1 High-z galaxy masses from spectroastrometry Alessio Gnerucci Department of Physics and Astronomy University of Florence 13/12/2009- Obergurgl Collaborators:
T-REX OU4 HIRES The high resolution spectrograph for E-ELT E. Oliva, T-REX meeting, Sexten Pustertal (I)1.
Lecture #2 Olivier Le Fèvre - LAM Cosmology Summer School 2014.
JWST calibration requirements Harald Kuntschner. JWST - an overview NIRCam –0.6-5 microns –FoV: 2.16x4.4 arcmin (0.0317” for short band and ” for.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
Gamma-ray Bursts in the E-ELT era Rhaana Starling University of Leicester.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
INTEGRAL FIELD SPECTROSCOPY AT THE VLT STAR (CLUSTER) FORMATION IN 3D : INTEGRAL FIELD SPECTROSCOPY AT THE VLT Markus Kissler-Patig (Instrument Scientist.
Integral Field Spectroscopy. David Lee, Anglo-Australian Observatory.
HIGH REDSHIFT GALAXIES and COSMOLOGY SUMMARY. RESOLUTION > (IGM metals, molecules, constants) ( would be fine too – turbulence?
End to End Simulations. p.2 What’s this ? This is the MUSE datacube of NGC 1068 we just received from ESO Can you remind me how many students we have.
Next generation redshift surveys with the ESO-VLT
1 VVDS: Towards a complete census of star formation at 1.4
ST–ECF UC, Dec 01 1 NGST support at the ST-ECF Bob Fosbury
Central Engine of AGN Xi’ian October 2006 Black Hole Mass Measurements with Adaptive Optic Assisted 3D-Spectroscopy Courtesy ESO Guia Pastorini Osservatorio.
The Study of IFU for the Li Jiang 2.4m Telescope ZHANG Jujia 张居甲 Yun Nan Astronomical Observatory. CAS Sino-French IFU Workshop Nov Li Jiang.
KMOS Instrument Overview & Data Processing Richard Davies Max Planck Institute for Extraterrestrial Physics  What does KMOS do?  When will it do it?
Do YSOs host a wide-angled wind? - NIR imaging spectroscopy of H 2 emission - 3. Spectro-Imaging using Gemini-NIFS Subaru UM, 1/30/2008 Hiro Takami (ASIAA)
PI Total time #CoIs, team Bob Fosbury 10n (ELT 42m) ~5. Skills: lens modelling, photoionization modelling, massive star SED modelling, practical nebular.
A global approach to ELT instrument developments J.-G. Cuby for the French ELT WG.
1 Deep spectroscopic redshift surveys are a central tool to modern Astrophysics Deep redshift surveys (z>0.3) have shaped our current understanding: 
Stellar Populations of High- Redshift Star-Forming Galaxies Using Rest-Frame Optical and UV Imaging Nicholas Bond (Rutgers University) Collaborators: Eric.
Filippo Mannucci Scientific cases of the Italian community for LBT.
E-ELT-HIRES possible design and capabilities E. Oliva (INAF-Firenze) B. Delabre (ESO) E. Oliva B. Delabre, ELT-HIRES, Cambridge1 o A very brief.
1 Comparative Performance of a 30m Groundbased GSMT and a 6.5m (and 4m) NGST NAS Committee of Astronomy & Astrophysics 9 th April 2001 Matt Mountain Gemini.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Laboratoire d’Astrophysique Ecole Polytechnique Fédérale de Lausanne Switzerland The energy profile of the accretion disk in Q from 3.0 years of.
25s detection of the Sy1 galaxy NGC3516 The Palermo BAT survey project Application to a sample of SDSS LINERs V. La Parola, A.Segreto, G. Cusumano, V.
The Chemo-Dynamical Structure of Galaxies: intermediate resolution spectroscopy of resolved stellar populations out to Virgo Giuseppina Battaglia ESO Simulations.
Emission Line Surveys Lecture 1 Mauro Giavalisco Space Telescope Science Institute University of Massachusetts, Amherst 1 1 From January 2007.
David R. Law Hubble Fellow, UCLA The Physical Structure of Galaxies at z ~ John McDonald, CFHT Galaxies in the Distant Universe: Ringberg Castle.
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
Describing 3D Datasets Igor Chilingarian (CRAL Observatoire de Lyon/Sternberg Astronomical Institute of the Moscow State University) IVOA DM & DAL WG –
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
1# 3-D Morphology of V723 Cas Nova Ejecta KeckII+LGSAO+OSIRIS Randy Campbell and Jim Lyke Hα images from Classical Novae, ed. Bode and Evans, Ch 12, O’Brien.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
Sample expanded template for one theme: Physics of Galaxy Evolution Mark Dickinson.
IFU studies of GRBs and SNe regions Lise Christensen (Excellence Cluster Universe, Technical University Munich) + Maryam Modjaz (NY), + Christina Thoene.
Black Holes in Globular Clusters Karl Gebhardt (UT)
3D spectroscopy at Paris Obs. (GEPI)
JWST Pipeline Overview
Galaxy Evolution from z=2 to the present
Observing the formation and evolution of massive galaxies
Resolving the black hole - nuclear cluster - spheroid connection
ESAC 2017 JWST Workshop JWST User Documentation Hands on experience
Presentation transcript:

Simulations of high-z galaxy observations COMPASS Simulations of high-z galaxy observations with an E-ELT/MOS Mathieu Puech

ELT-MOS MOS are workhorse instruments for the VLT (3 in ops, 1 in commissioning, 1 proceeding to phase B)

ELT-MOS Exploiting high-density SCs (1-10 arcmin-2) efficiently within the E-ELT patrol field (~40 arcmin²) requires a MOS

Seeing/GLAO limited mono-apertures (240) ELT-MOS ESO E-ELT Instrument Phase A studies : PI : F. Hammer PI : JG Cuby / S. Morris Seeing/GLAO limited mono-apertures (240) + 30 IFUs 20 MOAO-fed IFUs

Seeing/GLAO limited mono-apertures (240) ELT-MOS ESO E-ELT Instrument Phase A studies : + PI : F. Hammer PI : JG Cuby / S. Morris Seeing/GLAO limited mono-apertures (240) (+ 30 IFUs) 20 MOAO-fed IFUs =

ELT-MOS/MOSAIC 30 arcsec

ELT-MOS/MOSAIC High Multiplex Mode à la OPTIMOS-EVE : 30 arcsec 100-250 Fibers with GLAO/seeing resolution

ELT-MOS/MOSAIC High Def. Mode à la EAGLE : 30 arcsec ≥10 MOAO-fed IFUs with ~ 40-80 mas/pix

Other contacts: LNA & AIP (fibers), Univ. Nice, Vienna, Stockholm BOARD: Beatriz Barbuy Jean-Gabriel Cuby Lex Kaper Simon Morris Coordination: François Hammer Project Scientist: Chris Evans Dep. : Mathieu Puech Project Manager: Pascal Jagourel Dep. : Phil Parr Burman Science Team Engineering Team System Engineer: Phil Rees Instrument Scientist: Gavin Dalton Dep. : Hector Flores Other contacts: LNA & AIP (fibers), Univ. Nice, Vienna, Stockholm

ELT-MOS/MOSAIC Mixed-Architecture Design (MAD) Fiber-Only Option (FOO) HMM focal plate HDM focal plate Courtesy: David Pearson

ELT-MOS White Paper Issue 1.0 : ArXiv:1303.0029 Issue 2.0 : This Fall

ELT-MOS White Paper SIMULATIONS Next step is to prioritise TLR and iterate with technical & operational feasibility SIMULATIONS

ELT-MOS White Paper SIMULATIONS Next step is to prioritise TLR and iterate with technical & operational feasibility SIMULATIONS

WEBSIM COMPASS http://websim.obspm.fr PI : D. Gratadour ANR founding Major update of Websim over 2013-15 : -include sky background variations -include telluric features -implementation of batch mode -complete AO PSF library -extensive astrophysical templates as inputs -to be freely accessible http://websim.obspm.fr

Simulated Science Case : Galaxy mass assembly

Spatially-resolved spectroscopy of z~2-6 galaxies is required for distinguishing merger from rotation (Puech+10) MOAO GLAO is unable to recover the dynamical nature of z>2 distant galaxies (with ≲ 50 % of the Cn2 in the GL) GLAO Shaping E-ELT Science and Instrumentation

Newman et al. (2012) VLT/AO + ELT-IFU/HARMONI as 1st light : Detailed kinematics of distant galaxies will be largely covered by the time ELT-MOS arrives  ELT-MOS to focus on large surveys with optimized pixel scale (resolution vs. SB)

Simulated SC : galaxy mass assembly MOAO / 75mas/pix / R=5000 : no need for very high resolution ! Rotating disk Major merger Puech+08

Simulated Science Case : First light galaxies & Reionisation

First light galaxies & Reionisation

Simulated SC : first light galaxies & reionisation Simulated IFU observations of Ly-a emission lines at z~9 (LAEs) : Spatial template Simulation of z~0 clumpy disks (Bournaud+07) rescaled in flux and size to z~9 using current HST observations (eg, Grazian+12) Kinematics VLya= 200 km/s (constant outflow ; Swinbank+07) s scaled at 270 km/s to observed Integrated spectroscopy (Hu+10) 0.1-0.2’’ Spectral template Half-Gaussian sized to current observations at z~3-7 (Steidel+03 ; Hu+10 ; Jiang+13;Swinbank+07) EW(Lya) ↗ with JAB MOAO PSF : EE=30 % within 80x80 mas² (from EAGLE Phase A)

Optimal integrated Spectra (Rosales- Ortega et al. 2012) JAB=30 Rhalf=100mas « Faint & compact » at z~9 Very deep obs. : Exp. Time=40 hr

Simulated SC : first light galaxies & reionisation Simulated LAEs at z~9 : PRELIMINARY 4 hr 40 hr Grazian+12 obs. JAB=27 Simulation grid JAB=28 JAB=29 JAB=30 S/N-Optimal sampling : 40-120 mas S∕N=5 in Ly-a for Dpix=40/60/80/100/120 mas

Simulated SC : first light galaxies & reionisation Simulated IFU observations of UV interstellar lines at z~7 : Spatial template Simulation of z~0 clumpy disks (Bournaud+07) rescaled in flux and size to z~7 using current HST observations (eg, Grazian+12) Spectral template Stacked z~3 LBG spectrum (Shapley+03) rescaled in flux & resampled at R=5000. Focus on the SII/CIV region. MOAO PSF : EE=30 % within 80x80 mas² (from EAGLE Phase A)

Optimal integrated Spectra (Rosales- Ortega et al. 2012) JAB=26 Rhalf=150mas Averaged size & flux at z~7 Exp. Time=40 hr

Optimal integrated Spectra (Rosales- Ortega et al. 2012) JAB=27 Rhalf=100mas « Faint & compact » at z~7 Exp. Time=40 hr

Simulated SC : first light galaxies & reionisation Simulated UV interstellar lines at z~7 : 40 hr 40 hr JAB=25 JAB=26 JAB=27 S/N-Optimal sampling : 80-100 mas S∕N=5 in SII(1527A) for Dpix=40/60/80/100/120 mas

Conclusions A MOS will be essential on the E-ELT New consortium inherited from/building on the phase A: MOSAIC = EAGLE + OPTIMOS-EVE Updated Sc. Req. captured in a ELT-MOS white book Simulations of MOAO-fed IFU observations: Galaxy mass assembly: moderate spatial scales (~75 mas) favored with EE~25-30% Integrated spectra of very high-z galaxies: spatial scales ~ 80-100 mas favored Next steps for simulations: Spatially-resolved kinematics of absorption lines (MOAO) Simulation of mono-aperture (GLAO-fed) spectra: what is the optimal on-sky aperture? Specifications on the MOAO system: EE vs. DM pitch? 30

Sky subtraction with fibers demonstrated with FLAMES (I-band) on sky Expected in J-band: 0.6% of the sky-continuum & much better with IFUs (Yang et al., Messenger, in press; see also Yang et al’ Poster)

ELT-MOS ESO E-ELT Instrument Phase A studies : 2008-10 PI : JG Cuby / S. Morris PI : F. Hammer x 240 Mono-Object mode : 0.9'' Multi-IFU mode (0.3''/pix): x 30 (main OPTIMOS-EVE modes) Seeing/GLAO limited observations 20 MOAO-fed IFUs

Simulated SC : galaxy mass assembly MOAO z=4 GLAO z=4 50mas/pix R=5000 (Bournaud+07) Puech+10 GLAO is unable to recover the small-scale kinematics and rotation curves of z>2 distant galaxies (with ≲ 50 % of the Cn2 in the GL)