A massive disk around the intermediate-mass young star AFGL 490 ? Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris.

Slides:



Advertisements
Similar presentations
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Advertisements

Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
Breaking Barriers in Massive Star Formation with Stellar Interferometry Willem-Jan de Wit (ESO) Rene Oudmaijer (Leeds) Melvin Hoare (Leeds) Hugh Wheelwright.
NRAO Socorro 05/2009 Radio Continuum Studies of Massive Protostars Peter Hofner New Mexico Tech & NRAO.
High resolution (sub)millimetre studies of the chemistry of low-mass protostars Jes Jørgensen (CfA) Fredrik Schöier (Stockholm), Ewine van Dishoeck (Leiden),
Structures of accretion and outflow on small scales in high-mass protostars CIRIACO GODDI.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
Outflow, infall, and rotation in high-mass star forming regions
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
1mm observations of Orion-KL Plambeck, PACS team, Friedel, Eisner, Carpenter,...
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Mini Workshop on Star Formation and Astrochemistry. Barcelona, 2006 November 23 1 Robert Estalella, Aina Palau, Maite Beltrán (UB) Paul T. P. Ho (CfA),
School of something FACULTY OF OTHER School of Physics & Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES AMI and Massive Star Formation Melvin Hoare.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
ORBITAL MOTIONS IN BINARY AND MULTIPLE PROTOSTARS L. F. Rodríguez (IAUNAM, Morelia) L. Loinard, M. Rodríguez, & P. D’Alessio (IAUNAM, Morelia) S. Curiel,
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
Leonardo Testi: (Sub)Millimeter Observations of Disks Around High-Mass Proto-Stars, SMA, Cambridge 14 Jun 2005 Disks around High-Mass (Proto-)Stars  From.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Centimeter and Millimeter Observations of Very Young Binary and Multiple Systems -Orbital Motions and Mass Determination -Truncated Protoplanetary Disks.
MOLECULAR GAS and DUST at the CENTER of the EGG NEBULA Jeremy Lim and Dinh-V-Trung (Institute of Astronomy & Astrophysics, Academia Sinica, Taiwan) Introduction.
Á L V A R O S Á N C H E Z M O N G E B A R C E L O N A - N O V E M B E R 23, 2006 Centimeter and Millimeter Emission from Selected High-Mass Star-Forming.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Masers observations of Magnetic fields during Massive Star Formation Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn) with Gabriele Surcis,
Ionized gas in massive star forming regions Guido Garay Universidad de Chile Great Barriers in High-Mass Star Formation Townsville, September 15, 2010.
Mid-IR Spectra of IRAS IRS 1 and IRS 3 M.F. Campbell 1,9,10, T.K. Sridharan 2,10, H. Beuther 3, J. H. Lacy 4, J.L. Hora 2, Q. Zhu 5, M. Kassis.
Leonardo Testi: Intermediate-Mass Star Formation, IAU Symp 221, Sydney, July 23, 2003 Formation and Early Evolution of Intermediate-Mass Stars  Intermediate-Mass.
Protoplanetary disks as seen by the IRAM array Vincent Pietu (LAOG) A few important points in the observations and analysis related to the survey we have.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Dusty disks in evolved stars?
Studying Young Stellar Objects with the EVLA
Randolf Klein SOFIA – USRA/NASA Ames July 2014 AASTCS 4: Workshop on Dense Cores - Monterey, CA Issues with SED Fitting, PMS Tracks, and the Birthline.
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
Protostellar jets and outflows — what ALMA can achieve? — 平野 尚美 (Naomi Hirano) 中研院天文所 (ASIAA)
Masers Surveys with Mopra: Which is best 7 or 3 mm? Simon Ellingsen, Maxim Voronkov & Shari Breen 3 November 2008.
Submillimeter Array CH3OH A Cluster of Highly Collimated and Young Bipolar Outflows Emanating from OMC1 South. Luis A. Zapata 1,2, Luis.
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
The disk of AB Aurigae Dmitry Semenov (MPIA, Heidelberg, Germany)
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
1)Observations: where do (massive) stars form? 2)Theory: how do (massive) stars form? 3)Search for disks in high-mass (proto)stars 4)Results: disks in.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
IV. Radiative Transfer Models The radiative transfer modeling procedure is the same procedure used in Shirley et al. (2002) except that the visibility.
1)The environment of star formation 2)Theory: low-mass versus high-mass stars 3)The birthplaces of high-mass stars 4)Evolutionary scheme for high-mass.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
The Evolution of Massive Dense Cores Gary Fuller Holly Thomas Nicolas Peretto University of Manchester.
+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
1)The importance of disks in massive (proto)stars 2)The search for disks: methods and tracers 3)The result: “real” disks found in B (proto)stars 4)The.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
SMA and JCMT Observations of IRAS in HCN J=4-3: From Circumbinary Envelope to Circumstellar Disk SMA JCMT Shigehisa Takakuwa 1, Nagayoshi Ohashi.
High-mass star formation
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Possible evolutionary sequence for high-mass star formation
OBSERVATIONS OF BINARY PROTOSTARS
Spatially Resolved Millimeter Observations of Pre-Main Sequence Binaries Jenny Patience Thanks Merci.
Pre-Main-Sequence of A stars
Outflows and jets from massive star-forming clusters
Chasing disks around massive stars with Malcolm
-Orbital Motions and Mass Determination
Presentation transcript:

A massive disk around the intermediate-mass young star AFGL 490 ? Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris van der Tak (MPIfR Bonn, Germany) Annemieke Boonman (Univ. Leiden, NL) Ewine F. van Dishoeck (Univ. Leiden, NL) Ø100´´

Introduction – Motivation formation of high-mass stars – one of the unresolved mysteries of the present research dominant formation process: disk accretion or coalesence ? recent detections of disks around massive protostars:  IRAS (1.7kpc, Cesaroni et al. 1999, Zhang et al. 1998, B2) &   G (2.0kpc, Shepherd et al. 2001, B2...3)  disks are more massive and larger than disks around T Tauri and Herbig Ae stars Search for high-mass objects in early evolutionary states  survey of bright IRAS sources (Klein, Posselt, Henning, Schreyer: Poster)  one of these targets: AFGL 490 2/9

AFGL 490 — General Properties optical: diffuse nebulosity, NIR: luminous source D = 1 kpc, L  = 1.4 – 4·10 3 L   early B2..3 star, M  = M  typical properties of a Becklin Neugebauer Object: - weak continuum flux at  1cm - broad & strong Br  and Br  (Bunn et al. 1995) ionized region  100 AU (Simon et al. 1981, 1983) AFGL 490 3/9 K -band image

AFGL 490 — General Properties embedded in a dense cloud core (e.g Kawabe et al. 1984, Snell et al. 1984) poorly collimated high-velocity outflow (e.g. Lada & Harvey 1981) previous interferom. observations  presence of a huge disk ? (Mundy & Adelmann 1988, Nakamura et al. 1991) - 3mm cont.: 2500 x 1500 AU - 13 CO 1–0: x AU Motivation: study of this disk-like structure Our Observations: used JCMT, IRAM 30m, PdBI 13 CO 1 – 0 Texas telescope NMA OVRO 4/ AU box: 55´´x 55´´

AFGL 490 — Observational Results: CS 2–1 PdBI bar-like structure (2.5x0.4)10 4 AU different outflow systems an unvisible jet enters the denser cloud material ? disk-like system around AFGL 490 5/9

AFGL 490 — Comparison of the CS 2–1 line wings with : 6/9 Model of a typical disk of a Herbig Ae star (R = 400 AU) 4000 AU large-scale high- velocity CO outflow (a) VLA 2cm continuum map (b) Speckle H -band image (Campbell et al. 1986) (Hoare et al. 1996) repeated 2cm + H band observations by Hoare (2001): at the moment a point source -

A disk around AFGL 490 ? 7/9 Mass - from a Keplerian model – fit to the outer line wings: estimates M disk = M  inside R = 4000 AU ( M  = 8 M , i = 20°) - from the 3mm continuum (deconvolved point source): M gas = M  inside R = 500 AU ( T kin = K)  M   M disk  dynamical / self-gravitational stability ?  lifetime ? dynamical stability  Toomre´s Q parameter (e.g. Stone et al. 2000): with epicylce frequency  = (GM/r 3 ) 0.5 & surface density  = M disk /  R 2 disk when Q < 1: disk  locally graviationally unstable, fragmentation AFGL 490: R disk = 300…4000 AU, T disk = 50…200 K, M disk = 3…10 M  Q < 0.5

AFGL 490 — Estimate of the lifetime against: 8/9 Its known  more evolved Be stars ( t life = 10 5 …10 6 yrs) have no disks anymore (Natta et al. 1997)  speculation about the destruction mechanism: (a)photoevaporation: (weak wind model by Hollenbach et al. 1994): M  = 8 M , M disk = 6 M  Ly continuum flux = 3x10 44 s -1   t destruction = 10 8 yrs (b) accretion onto the star: t acc = M  / M, with M = M  /yr (Palla & Stahler 1992), M  = 8 M    t accrection = 8x10 5 yrs - large compared with t dyn (outflow) = 2x10 4 yrs (Churchwell 1999) - to build up a star with 8 M   M must have been larger in the past (c) self-gravitation: e.g. Adams et al. (1989), Laughlin & Bodenheimer (1994) – evolution of disk with Q  1 : fragmentation within the time of the orbital period (  t destruction = 10 3 –10 4 yrs)  most important destruction mechanism

AFGL 490 — Model Conclusions inner free zone R = AU a larger gas torus R  4000 AU feeds an inner (accrection) disk R  500 AU remnant of the flattened inner cloud core R  AU further high- resolution observations and theoretical work are needed 9/ AU

END

AFGL 490 — Our Observations Single-dish Observations Mapping in - CS J = 5 – 4, 7 – 6, C 18 O 2 – 1: JCMT 15m, CS 3 – 2, 2 – 1, C 18 O 2 – 1: IRAM 30m, Continuum 450  m & 870  m, SCUBA, Set of molecular lines at [0,0] position Plateau de Bure Interferometer Observations Mapping in - CS 2 – 1 & continuum al = GHz - clean beam size: 2.73´´  2.22´´ - primary beam 51´´

AFGL 490 — Observational Results CS 2–1 PdB Interferometer IRAM 30m primary beam Ø51 ´´ K-band image (Hodapp 1994) + CS 2–1  

AFGL 490 — Observational Results: CS 2–1 PdBI Spectra

AFGL 490 — Observational Results: Single-Dish AFGL 490: - embedded in a dense cloud core - CS maps: spherically symmetric morphology - C 18 O maps: extended in north-south similar to the continuum for  800  m

AFGL 490 — Observational Results: = 3mm PdBI Continuum only one strong mm source green contours: > 3  rms white contours: 1  rms

AFGL 490 — Position-velocity-maps A simple model of Keplerian motion (Vogel et al. 1985) Assumptions: - rotational equilibrium model: a central star + the disk mass lineary increasing with the radius - R disk = 4´´ = 4000 AU, M  = 8(  1) M  Fit parameters: M disk = M , inclination angle i = 20°