Habilitation à diriger les recherches

Slides:



Advertisements
Similar presentations
ELECTROCHEMISTRY.
Advertisements

ROLUL CERCETARII FUNDAMENTALE IN CREAREA BAZEI DE CUNOSTINTE PENTRU CERCETARE APLICATIVA DIN DOMENIUL NOILOR MATERIALE SI TEHNOLOGII.
Plasma Window Options and Opportunities for Inertial Fusion Applications Leslie Bromberg Ady Herskovitch* MIT Plasma Science and Fusion Center ARIES meeting.
Chapter 2: Sections 4 and 5 Lecture 03: 1st Law of Thermodynamics
Imperial College London 1 3. Beam extraction 3. Extraction of particle beams 3.1 The space charge limit and Child-Langmuirs law 3.2 External and internal.
Spectrochemical Instrumentation Modules
Lecture 6 ATOMIC SPECTROSCOPY
Physical Science Chapter 6
Chapter 10 Thermal Physics, Temperature and Heat.
Electronics Cooling MPE 635 Mechanical Power Engineering Dept.
Particle’s Dynamics in Dusty Plasma with Gradients of Dust Charges
P1 Energy and Electricity (1) The rate at which an object transfers energy depends upon 1.surface area 2. material object is made from 3. Surface type.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Nonequilibrium Thermodynamics Laboratories The Ohio State University OH Laser-Induced Fluorescence Measurements in Nanosecond Pulse Discharge Plasmas Inchul.
Modeling lamps using commercial packages ROUFFET Jean-Baptiste CPAT – Université de Toulouse, France COST – Model Inventory Workshop, Funchal, April 2005.
Laboratoire de Physique des Plasmas Global Model of Micro-Hollow Cathode Discharges Pascal CHABERT Laboratoire de Physique des Plasmas, Ecole Polytechnique,
OPOLEOpole University Institute of Physics, Plasma Spectroscopy Group I am from.. 1.
Modelling of an Inductively Coupled Plasma Torch: first step André P. 1, Clain S. 4, Dudeck M. 3, Izrar B. 2, Rochette D 1, Touzani R 3, Vacher D. 1 1.
AAS and FES (Ch 10, 7th e, WMDS)
Atomic Emission Spectroscopy
AA and Atomic Fluorescence Spectroscopy Chapter 9
Atomic Spectroscopy Atomic Spectroscopic Methods Covered in Ch 313: Optical Atomic Spectrometry (Ch 8-10) Atomic X-ray Spectrometry (Ch 12) Atomic Mass.
Atomic Emission Spectroscopy
427 PHC.  Atomic emission spectroscopy (AES) is based upon emission of electromagnetic radiation by atoms.
TU/e Eindhoven University of Technology A.J. Flikweert, E. Stoffels, W.W. Stoffels, E.J. Ridderhof, R.P. Dahiya, G.M.W. Kroesen Dept. of Applied Physics,
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Atomic Emission - AES M* → M + hn Thermal excitation M → M*
Dr. Jie ZouPHY Chapter 43 Molecules and Solids.
MODELING OF MICRODISCHARGES FOR USE AS MICROTHRUSTERS Ramesh A. Arakoni a), J. J. Ewing b) and Mark J. Kushner c) a) Dept. Aerospace Engineering University.
Thermal Properties of Crystal Lattices
MODELING OF MICRODISCHARGES FOR USE AS MICROTHRUSTERS Ramesh A. Arakoni a), J. J. Ewing b) and Mark J. Kushner c) a) Dept. Aerospace Engineering University.
Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh
LABORATOIRE ARC ELECTRIQUE ET PLASMAS THERMIQUES 3 rd International Workshop on RHTG,10/2/2008, Heraklion, Crete, Greece Definition of a new level one.
 Describe the image  ◦ What is it? ◦ What does it measure? ◦ How does it work?
Atomic Emission Spectroscopy
Jean-Charles Matéo-Vélez, Frédéric Thivet, Pierre Degond * ONERA - Centre de Toulouse * CNRS - Mathématiques pour l'Industrie et la Physique, Toulouse.
EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY COST is supported by the EU RTD Framework Programme ESF provides the COST Office through an EC contract.
1.1 Inductively coupled plasma (ICP) Three Argon flow 1.Plasma gas (10-20 L/min) 2.Nebulizer gas (~1L/min) 3.Optional auxiliary gas (~0.5L/min) Radio-frequency.
Vacuum Technology in Electrical Switches
Chemistry 101 : Chap. 5 Thermochemistry (1) The Nature of Energy (2) The First Law of Thermodynamics (3) Enthalpy (4) Enthalpy of Reaction (5) Calorimetry.
INTRODUCTION TO CONDUCTION
Kinetic Molecular Theory of Matter
Laboratory for Optical Physics and Engineering MOLECULAR SPECTROSCOPY OF RARE EARTH AND METAL-HALIDE MOLECULES International Symposium on Molecular Spectroscopy.
1 Thermal Physics Chapter Thermodynamics Concerned with the concepts of energy transfers between a system and its environment and the resulting.
Thermal Physics Thermal Physics is the study of temperature and heat and how they effect matter. Heat leads to change in internal energy which shows as.
INTRODUCTION Characteristics of Thermal Radiation Thermal Radiation Spectrum Two Points of View Two Distinctive Modes of Radiation Physical Mechanism of.
1 Fluid Models. 2 GasLiquid Fluids Computational Fluid Dynamics Airframe aerodynamics Propulsion systems Inlets / Nozzles Turbomachinery Combustion Ship.
On the use of LIBS to determine the fractional abundances of carbon ions in the laser plasma plume M. Naiim Habib 1, Y. Marandet 2, L. Mercadier 3, Ph.
HiCAT- a Novel Diagnostic for Mass Loss and Species Composition Analysis Goal: Provide In-situ, real time characterization of ablated/ vaporized materials.
ENT 255 HEAT TRANSFER BASICS OF HEAT TRANSFER. THERMODYNAMICS & HEAT TRANSFER HEAT => a form of energy that can be transferred from one system to another.
Plasma diagnostics using spectroscopic techniques
Trimester 2 Science vocabulary and concepts: Heat & Energy.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
M.R. Burleigh 2601/Unit 4 DEPARTMENT OF PHYSICS AND ASTRONOMY LIFECYCLES OF STARS Option 2601.
Unit 1. Matter and Change. Do Now:  What are the State of Matter?
Streamers, sprites, leaders, lightning: from micro- to macroscales Workshop, Oct. 8-12, 2007, Lorentz Centre Organizers: Ute Ebert (CWI Amsterdam, TU Eindhoven),
Chapter 5.4 Notes Thermal Energy. Thermal Energy is the total kinetic energy of the motion of atoms in an object. Molecules in an object are constantly.
ENGINEERING THERMODYNAMICS Dr. M.R.SWAMINATHAN Assistant Professor Internal Combustion Engineering Division Department of Mechanical Engineering ANNA UNIVERSITY.
THERMODYNAMICS Branch of science dealing with nature of heat.
Chemistry 4631 Instrumental Analysis Lecture 18 Chem 4631.
Thermal Physics Chapter 10. Thermodynamics Concerned with the concepts of energy transfers between a system and its environment and the resulting temperature.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
DOE Plasma Science Center Control of Plasma Kinetics
ENERGY LOADING AND DECAY OF N2 VIBRATION
N2 Vibrational Temperature, Gas Temperature,
A NEW SELF-ORGANIZATION ANODE PATTERN OBSERVED IN ATMOSPHERIC DC GLOWS
COMPLEX ELECTRON ENERGY DISTRIBUTIONS IN ASYMMETRIC RF-DC DISCHARGES
ELECTRIC FIELD VECTOR MEASUREMENTS
DOE Plasma Science Center Control of Plasma Kinetics
Thermal energy bill nye heat
Presentation transcript:

Habilitation à diriger les recherches Laboratoires Arc Electrique et Plasmas Thermiques ANDRE Pascal Habilitation à diriger les recherches Spécialité: Physique des plasmas et électrotechnique

1997-01 Maître de Conférences Curriculum Vitae 1987 Bac C 1992 DEA de Physique (U.B.P) D.U. Etude de la composition et des propriétés thermodynamiques des plasmas hors d’équilibre thermodynamique  Université Blaise Pascal, LAEPT. Directeur de thèse : Pr. A. Lefort 1995-96 Post-doc LAEPT Bourse d’excellence régionale 1996-97 A.T.E.R. à l’U.F.R. sciences (U.B.P.) 1997-01 Maître de Conférences à l’U.F.R. Sciences (U.B.P.) en 63ème section. Licence E.E.A.

Industrial Contracts SODEBOR, EDF (Contrat n°: E8360/AEE 2142 ; terminé en 1998)  Real time detection of metallic species and complex organic species in a fluidized bed. GIAT Industries (Contrat n° DCAL/GO/97.505)  Experimental and theoretical study of a plasma torch igniting gun propellant. GIAT Industries (Contrat débutant en janvier 2001)   Theoretical study of a low energy plasma Groupement d’étude des fusibles en moyenne tension (Schneider Electric, Alstom, Ferraz Shawmut, EDF) Composition, thermodynamic properties, transport coefficients at thermal equilibrium of Ag, SiO2 mixture.

University Collaboration Laboratoire de Sciences des Procédés Céramiques et de Traitement de Surface UMR 6638 du CNRS, Université de Limoges, 123, avenue Albert Thomas, F 87060 LIMOGES CEDEX Calculation of the composition, thermodynamic properties and transport coefficients in plasmas out of thermal equilibrium.   A.F. Ioffe Phys.-Techn. Inst. Rus. Acad. Sci. Politechnicheskaya 26, St Petersburg, Russia Experimental and theoretical study of a discharge with non-metallic electrodes.

Co-guiding of students Ph.D. (With Prof. A. Lefort) Ondet J. (D.U. 1062, Dec. 98) Pollutants detection with an I.C.P. torch Duffour E. (D.U. 1250, Dec. 00) Plasma interacting with an insulating wall Vacher D. (Juin 02) Barbara H. (Juin 02) Continuum radiation Stages de D.E.A. (4) Stages CNAM (3)

Publications Publications in international journals with referee: 21: published 2: submit Communications in congress: 18 Industrial reports: 3

Work Organisation (Directeur A. Lefort) E.T.C. André P. GIAT D.N.M.L.E Shkoln’ik S. IOFFE I.C.P. Faure G. G.F.M.T. Bussière W. André P. (SPCTS) Composition, Transport Coef. Molecular Spectroscopy Instrumentations: Pressure, Optical, Electrical. Picard J.P. Capacitor Bank Duffour E. (LTSP) Molecular Dynamic Measurements Vacher D. ICP Measurements Fluidized-bed Rochette D. (LMA) Modelisation Barbara H. Continuum radiation

Plasma out of thermal equilibrium. (with SPCTS, Limoges) gas high temperature ions, electrons, neutral particles Translational temperature: Electrons mobility >> Heavy species mobility Te->>Th Boltzmann distribution: Electronic excitation level: Tex Rotational level : Trot Vibrational level: Tvib

Plasma out of thermal equilibrium. (with SPCTS, Limoges) Composition calculation (SPCTS, Limoges) Collisionnal radiative model Van de Sanden et al (new function) Potapov (Gibbs Free Energy minimisation) Richley-Tuma (pseudo-kinetic) T* Theorem H de Boltzmann Second law of thermodynamic Gradients, applied forces+Stable in time Gibbs energy minimisation Idem as Giordano Application Plasma Coupled Inductively Discharge with Liquid Non-Metallic Electrodes

Plasma out of thermal equilibrium. (with SPCTS, Limoges) Transport Coefficients V. Rat : D.U. 5 juillet 2001 à Limoges Bracket Integrals: A, B, A’, B’

Inductively Coupled Plasma Purposes: Real time detection Avoid calibration Fluidized Bed Characterisation Control of the combustion Applications: Coal thermal power station (EDF) Incinerator

Inductively Coupled Plasma Spectrometer ICP (64 MHz) Oven (1000 K)

Inductively Coupled Plasma 500 W, (Ar+CuSO4, 5 H2O) 1300 W, (Ar+CuSO4, 5 H2O) Te/Th=1 Te/Th=1.5

Inductively Coupled Plasma Excitational Temperature (510, 515, 521 nm) Thermal non-equilibrium parameter (Te/Th)

Measured Temperatures Inductively Coupled Plasma N2/O2 (% molaire) Measured Temperatures Obtained Temperatures 40/60 4010 +/- 350 K 3800 K 49,6/50,4 3960 +/- 350 K 3900 K 80/20 4810 +/- 250 K Reference Temperature

Inductively Coupled Plasma Perspectives: Vacher D.: D.U. Juin 02 Fundamental Energy transfert Fluidized-Bed characterisation (+CNAM) Application Mixture of plastic Animal flour

Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg) -U0 1 3 2 5 R0 4 h L 1. Metallic current leads 2. Ceramics chutes 3. Tap water streams 4. Moveable probe 5. Discharge plasma Self-maintained discharges Volumetric (diffuse) form Atmospheric pressure Out of thermal equilibrium

Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg) Spectroscopic Measurements (N2 C3u )

Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg) Probe measurements Plasma potential distribution I65 mA, L6 mm (cylindrical probe). 1 -    Water cathode 2 -     Water anode Probe characteristics flat probe faced to the cathode  Ion branches of probe characteristics nions

Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg) Probe measurements +Microwave sounding nc  (1.52.0)1018 m‑3 near the cathode na  (0.91.2)1018 m‑3 near the anode

Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg) Near the anode : 3.2 Near the cathode: 2.2 Perspectives Add copper : Tex Electrical conductivity out of thermal equilibrium Heat the water

Plasma interacting with an insulating wall (with GIAT industries) Purpose: Ignite the propulsive powder by plasma

Plasma interacting with an insulating wall (with GIAT industries) Tests before real bomb tests Axial Projection Radial Projection Pressure, Spectroscopy, Current, Tension

Plasma interacting with an insulating wall (with GIAT industries) PE; Vinit = 340 V POM; Vinit= 340 V Graphite fraction Electrical set up

Plasma interacting with an insulating wall (with GIAT industries) PE; Vinit = 340 V POM; Vinit= 340 V Pressure PE: 1kg/m3

Plasma interacting with an insulating wall (with GIAT industries) Temperature from copper spectral lines Spectra from 430 to 530 nm. Time ~ 1.14 ms. Temperature: ~7000 K to ~10000 K

Plasma interacting with an insulating wall (with GIAT industries) Wall Surface after interaction (M.E.B.) Copper droplet Expansion of Copper PE+Cu (1%); P=1atm.

Plasma interacting with an insulating wall (with GIAT industries) Main process during the interaction? Composition of plasma ? Boundary conditions ? Molecular dynamic simulation (D.U. Duffour) All interactions between atoms

Plasma interacting with an insulating wall (with GIAT industries)

Plasma interacting with an insulating wall Perspectives: Interpretation manipulation UI internal energy U/I electrical conductvity pression, temperature, ablated mass Micro- plasma : air-bag in cars Microwave igniter (GORF) D.M. : pressure, thermal conductivity Torche modelisation Cicuit breakers (GEC Alstom) E. Duffour

Team working together at the LAEPT Conclusion Team working together at the LAEPT Contracts from industries Schneider Electric, Alstom, Ferraz Shawmut, GIAT. University Collaborations G.I.S. du Massif Central: Pôle Matériaux (16 laboratories)