FROM STRANGE INSULATOR TO SPIN-ORBIT CONDUCTOR: UNVEILING ORBITAL- SELECTIVENESS AT THE LAO-STO INTERFACE. M. Gabay Intensive course by A. Millis: OXIDE.

Slides:



Advertisements
Similar presentations
Topological Insulators
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
Searching for Majorana fermions in semiconducting nano-wires Pedram Roushan Peter O’Malley John Martinis Department of Physics, UC Santa Barbara Borzoyeh.
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Andreev Reflection in Quantum Hall Effect Regime H. Takayanagi 髙柳 英明 Tokyo University of Science,Tokyo International Center for Materials NanoArchitechtonics.
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
“Strongly correlated electrons in bulk and nanoscopic systems” Theory of Condensed Matter Elbio Dagotto, Distinguished Professor, UT-ORNL.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
IRIDATES Bill Flaherty Materials 286K, UCSB Dec. 8 th, 2014.
1 Effect of density gradients on magnetotransport of quantum Hall systems L. Ponomarenko.
Lecture Number 4: Charge Transport and Charge Carrier Statistics Chem 140a: Photoelectrochemistry of Semiconductors.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Center for Quantum Information ROCHESTER HARVARD CORNELL STANFORD RUTGERS LUCENT TECHNOLOGIES Spin effects and decoherence in high-mobility Si MOSFETs.
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
Review: S.O. Coupling in Atomic Physics
Disorder and chaos in quantum system: Anderson localization and its generalization (6 lectures) Boris Altshuler (Columbia) Igor Aleiner (Columbia)
07/11/11SCCS 2008 Sergey Kravchenko in collaboration with: PROFOUND EFFECTS OF ELECTRON-ELECTRON CORRELATIONS IN TWO DIMENSIONS A. Punnoose M. P. Sarachik.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Spintronics and Graphene  Spin Valves and Giant Magnetoresistance  Graphene spin valves  Coherent spin valves with graphene.
Fundamentals and Future Applications of Na x CoO 2 W. J. Chang, 1 J.-Y. Lin, 2 C.-H. Hsu, 3 J.-M. Chen, 3 J.-M. Lee, 3 Y. K. Kuo, 4 H. L. Liu, 5 and J.
Electron coherence in the presence of magnetic impurities
Hall effect in pinned and sliding states of NbSe 3 A. Sinchenko, R. Chernikov, A. Ivanov MEPhI, Moscow P. Monceau, Th. Crozes Institut Neel, CNRS, Grenoble.
Modeling thermoelectric properties of TI materials: a Landauer approach Jesse Maassen and Mark Lundstrom Network for Computational Nanotechnology, Electrical.
NMOS PMOS. K-Map of NAND gate CMOS Realization of NAND gate.
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
Influence of carrier mobility and interface trap states on the transfer characteristics of organic thin film transistors. INFM A. Bolognesi, A. Di Carlo.
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
A Critical Look at Criticality AIO Colloquium, June 18, 2003 Van der Waals-Zeeman Institute Dennis de Lang The influence of macroscopic inhomogeneities.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Strontium Ruthenate Rachel Wooten Solid State II Elbio Dagotto
A.A. Bykov, I.S. Strygin, D.V. Dmitriev
Charge pumping in mesoscopic systems coupled to a superconducting lead
Integrated Circuit Devices
Interfaces with High Temperature Superconductors Relevance of Interfacial Degrees of Freedom Thilo Kopp, Universität Augsburg (2) nanomagnetism at interfaces.
Spin-orbit interaction in semiconductor quantum dots systems
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Unusual magnetotransport properties of NbSe 3 single crystals at low temperature A.A.Sinchenko MEPhI, Moscow, Russia Yu.I.Latyshev, A.P.Orlov IRE RAS,
May, 21, 2014 Long, 140 ns electron spin lifetime in chemically synthesized graphene and related nanostructures and its strong interplay between the surface.
“Granular metals and superconductors” M. V. Feigel’man (L.D.Landau Institute, Moscow) ICTS Condensed matter theory school, Mahabaleshwar, India, Dec.2009.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
AC Susceptibility Adrian Crisan National Institute of Materials Physics, Bucharest, Romania.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Fatemeh (Samira) Soltani University of Victoria June 11 th
Igor Lukyanchuk Amiens University
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
Plasmonic waveguide filters with nanodisk resonators
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Novel Scattering Mechanisms for Nanotube-Silicon Devices
Depletion Region ECE 2204.
Interplay of disorder and interactions
Interplay between disorder and interactions
Strained Silicon MOSFET
Long Channel MOS Transistors
Ionic liquid gating of VO2 with a hBN interfacial barrier
Fig. 5 The gate voltage dependence of IEE of the Rashba-split 2DEG between SrTiO3 and 3-UC LaAlO3. The gate voltage dependence of IEE of the Rashba-split.
Colossal Magnetoresistance
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

FROM STRANGE INSULATOR TO SPIN-ORBIT CONDUCTOR: UNVEILING ORBITAL- SELECTIVENESS AT THE LAO-STO INTERFACE. M. Gabay Intensive course by A. Millis: OXIDE INTERFACES, April 4th, 2012 Ecole Polytechnique April 4th, 2012 Ecole Polytechnique

 Jean-Marc Triscone  Andrea Caviglia  Stefano Gariglio  Nicolas Reyren  A. Fête M. Rozenberg A.Barthélémy, M. Bibes A. Santander-Syro

 From diffusion to reconstruction…to confusion  Band inversion (t 2g orbitals dxy  dxz, dyz)  (Electric field?) confinement on STO side (mind the dielectric constant)  The carrier concentration puzzle  It takes two (types of bands) to tango The Band story

Conduction depends on  Nature of the layers in contact (SrO/AlO2 vs LaO/TiO2)  Oxygen pressure  Mobility  Temperature  # of LAO layers

Nature Materials 7, (2008) A 2DEG can also be produced at the surface of pure STO A.F. Santander-Syro. Et al, Nature 469, 189, 2011

A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, J.-M. Triscone, Nature 456, 624 (2008 ) Diffusion SO metal Horizontal scale: use conductivity at given T, to compare phase diagrams from different samples

 A strange insulator regime  Surface reconstruction that avoids polar catastrophe A few oddities revealed by transport measurements in LAO/STO heterostructures  A weird quantum critical point  A dumbfounding parallel magnetotransport

 |e i   For the electronic states  For the Cooper pair state Ioffe-Regel criterion for localization: k F l~1 Rs=h/e 2 Rs=h/4e 2 In fact localization at T=0 in 2D even if k F l>>1

d (~2-7nm)  Drude part  d < l (~ 5nm)  Weak localization part  d < Lin, Lso, Lh (~50 nm)  Interaction part  d <(D (ħ/k B T)) 1/2 From measurements of R sheet, n 2D and MR

Courtesy of A. Caviglia 1.12≤k F l ≤4 as T varies from1.5K to 20K

Courtesy A. Caviglia

In the strongly underdoped regime k F l~1

 Band inversion (t 2g orbitals dxy  dxz, dyz)  (Electric field?) confinement on STO side (mind the dielectric constant)  The carrier concentration puzzle  It takes two (types of bands) to tango The Band story

 Band inversion (t 2g orbitals dxy  dxz, dyz)  (Electric field?) confinement on STO side (mind the dielectric constant)  The carrier concentration puzzle  It takes two (types of bands) to tango The Band story

 Band inversion (t 2g orbitals dxy  dxz, dyz)  (Electric field?) confinement on STO side (mind the dielectric constant)  The carrier concentration puzzle  It takes two (types of bands) to tango The Band story

STOLAO z

et al, Nature 469, 189, 2011

xz, yz orbitals extend deeper inside the bulk

 Band inversion (t 2g orbitals dxy  dxz, dyz)  (Electric field?) confinement on STO side (mind the dielectric constant)  The carrier concentration puzzle  It takes two (types of bands) to tango The Band story

Appl. Phys. Lett 94, (2009) Courtesy of A. Caviglia

p O2 =10 -5 mbar 10 uc

Phys. Rev. Lett. 107, (2011) p O2 =10 -3 mbar 10 uc

p O2 = mbar Tc=0.12K

 Band inversion (t 2g orbitals dxy  dxz, dyz)  (Electric field?) confinement on STO side (mind the dielectric constant)  The carrier concentration puzzle  It takes two (types of bands) to tango The Band story

Phys. Rev. Lett. 103, (2009) p O2 = mbar 10 uc

A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, J.-M. Triscone, Nature 456, 624 (2008 ) Diffusion SO metal

T=1.5K Perpendicular magnetoconductance for different gate voltages A. Caviglia et al PRL 104, (2010) WL correction to conductivity in the diffusive regime A large spin-orbit effect is uncovered B SO =  0 /4  D  SO B el =  0 /4  D  B in =  0 /4  D  in

Rashba spin-orbit coupling ħ  SO = E SO ~ 2 Ek F 1/  SO =   SO   m * =( h 2 / E)√ B SO /  0 H= ( E x P ). s  (Drude)=  -  (WAL)-  e-e) -  (Super)  

m* max ~2.2m e

PRL 106, , 2011 ns~ cm -2 xz, yz orbitals extend deeper inside the bulk

B Rashba = ( ExP ) xy band is isotropic in xy plane Model xz,yz bands as 1D, xz is // current At Γ point, Exz~E F ; Exy<<E F  /  = - 1/8 (  /E F ) 2

B=7T Courtesy A. Fête

A. Caviglia et al PRL 104, (2010)