Writing equations given slope and point

Slides:



Advertisements
Similar presentations
1.4 Linear Equations in Two Variables
Advertisements

EXAMPLE 1 Write an equation of a line from a graph
§ 2.4 The Slope of a Line.
Chapter 1. Graphs, Functions, & Models
A3 2.4 Parallel and Perpendicular Lines, Avg. rate of change
Graphing Parallel and Perpendicular Lines
Parallel & Perpendicular Lines
Point-Slope Form Use point-slope form to write the equation of a line. 2.Write the equation of a line parallel to a given line. 3.Write the equation.
Parallel and Perpendicular Lines
Slope of Parallel and Perpendicular Lines Geometry 17.0 – Students prove theorems by using coordinate geometry, including various forms of equations of.
Unit 1 Basics of Geometry Linear Functions.
1.4: equations of lines CCSS:
5.7 Parallel and Perpendicular Lines
Agenda Lesson 5-5 – Parallel and Perpendicular Lines Standards 7.0 Derive linear equations by using the point-slope formula 8.0 Understand the concept.
2.5 The Point-Slope Form of the Equation of a Line.
Parallel and Perpendicular Lines
After today, the next four class periods are:
Chapter 4 Algebra I and Concepts. Day 1, Section 4-1: Graphing in Slope- Intercept Form Slope-Intercept Form: Any equation written in the form y = mx.
Write an equation given the slope and a point EXAMPLE 2 Write an equation of the line that passes through (5, 4) and has a slope of –3. Because you know.
Linear Equations in Two Variables
7.2 Review of Equations of Lines; Linear Models
Writing linear equations in slope-intercept form
Equations of lines.
EXAMPLE 1 Write an equation of a line from a graph
1.2 Linear Equations in Two Variables
1.3 Linear Equations in Two Variables Objectives: Write a linear equation in two variables given sufficient information. Write an equation for a line.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 2 Graphs and Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Slopes of Equations and Lines Honors Geometry Chapter 2 Nancy Powell, 2007.
Goal: Write a linear equation..  1. Given the equation of the line 2x – 5y = 15, solve the equation for y and identify the slope of the line.  2. What.
2.5 Writing Equation of a Line Sept 19, Equations of a Line equation written in the form Ax + By = C where A and B are not both zero Slope-Intercept.
Section 1.1 Slopes and Equations of Lines
Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1 1 Chapter 3 Equations and Inequalities in Two Variables; Functions.
Day Problems Graph each equation.
Point-Slope Formula Writing an Equation of a line Using the Point-Slope Formula.
1.Given slope (m) and y-intercept (b) create the equation in slope- intercept form. 2. Look at a graph and write an equation of a line in slope- intercept.
3-7 Equations of Lines in the Coordinate Plane
Date: Topic: Lines and Slope (1.2)
C ollege A lgebra Linear and Quadratic Functions (Chapter2) 1.
Writing Equations of a Line. Various Forms of an Equation of a Line. Slope-Intercept Form.
Notes Over 5.3 Write an equation in slope-intercept form of the line that passes through the points.
WRITE EQUATIONS OF PARALLEL AND PERPENDICULAR LINES November 20, 2008 Pages
Section 6.6 What we are Learning:
2.4 Essential Questions What is the point-slope form?
 Complete the tables x5x – xx
§ 2.5 Equations of Lines. Martin-Gay, Intermediate Algebra: A Graphing Approach, 4ed 22 Slope-Intercept Form of a line y = mx + b has a slope of m and.
Lesson 5.5 OBJ: To write equations of parallel and perpendicular lines.
Warm Up Given: (3, -5) and (-2, 1) on a line. Find each of the following: 1.Slope of the line 2.Point-Slope equation of the line 3.Slope-Intercept equation.
5.6 Parallel and Perpendicular Lines
The Slope of a Line Mathematicians have developed a useful measure of the steepness of a line, called the slope of the line. Slope compares the vertical.
Point-Slope Form The line with slope m passing through the point (x1, y1) has an equation the point –slope form of the equation of a line.
GEOMETRY HELP Find and compare the slopes of the lines. Each line has slope –1. The y-intercepts are 3 and –7. The lines have the same slope and different.
5-6 PARALLEL AND PERPENDICULAR LINES. Graph and on the same coordinate plane. Parallel Lines: lines in the same plane that never intersect Non-vertical.
WARM-UP Solve each equation for y 1) 2) Determine if the following points are on the line of the equation. Justify your answer. 3) (3, -1) 4) (0, 1)
Section P.2 – Linear Models and Rates of Change. Slope Formula The slope of the line through the points (x 1, y 1 ) and (x 2, y 2 ) is given by:
1.4 Graphing Lines If real is what you can feel, smell, taste, and see, then “real” is simply electrical signals interpreted by the brain. -Morpheus.
Remember: Slope is also expressed as rise/run. Slope Intercept Form Use this form when you know the slope and the y- intercept (where the line crosses.
Slopes of Parallel and Perpendicular Lines. Different Forms of a Linear Equation  Standard Form  Slope-Intercept Form  Point-Slope Form  Standard.
Drill #23 Determine the value of r so that a line through the points has the given slope: 1. ( r , -1 ) , ( 2 , r ) m = 2 Identify the three forms (Point.
Chapter 5 Review. Slope Slope = m = = y 2 – y 1 x 2 – x 1 Example: (4, 3) & (2, -1)
Solve: -4(1+p) + 3p - 10 = 5p - 2(3 - p) Solve: 3m - (5 - m) = 6m + 2(m - 4) - 1.
Equations of Lines Part 2 Students will: Write slope intercept form given a point and a slope 1.
Slope of a Line. Slopes are commonly associated with mountains.
Parallel & Perpendicular Lines
Equations of Lines Point-slope form: y – y1 = m(x – x1)
Objectives Identify and graph parallel and perpendicular lines.
5-5 Parallel and Perpendicular Lines
EXAMPLE 1 Write an equation of a line from a graph
Slope-Intercept Form of the Equation of a Line
Equations of Lines Point-slope form: y – y1 = m(x – x1)
Even better… write it as y = 3x – 6
Presentation transcript:

Writing equations given slope and point 5.2 12/6/13

Solving Equations In any equation, we can solve for any variable that is not known Rewrite in terms of that variable Find a value if all the other values are known Can use this to find equations

Point-Slope Form of the Equation of a Line The point-slope equation of a non-vertical line of slope m that passes through the point (x1, y1) is y – y1 = m(x – x1).

Solving With Slope and a Point Substitute known values into the equation Rewrite the equation y = mx + b with slope and y-intercept values

Example: Writing the Point-Slope Equation of a Line Write the point-slope form of the equation of the line passing through (-1,3) with a slope of 4. Then solve the equation for y. Solution We use the point-slope equation of a line with m = 4, x1= -1, and y1 = 3. This is the point-slope form of the equation. y – y1 = m(x – x1) Substitute the given values. Simply. y – 3 = 4[x – (-1)] We now have the point-slope form of the equation for the given line. y – 3 = 4(x + 1) We can solve the equation for y by applying the distributive property. y – 3 = 4x + 4 y = 4x + 7 Add 3 to both sides.

Solving with Slope and Point Find the equation of the line passing through the point (-3, 0 ) and has slope of 1/3

Solving with Slope and a Point Find the equation of the line passing through point (-2, -1) with slope of -3

Solving with Slope and Point Find the equation of the line passing through the point (-3, 0 ) and has slope of 1/3

Solving with Slope and a Point Find the equation of the line passing through (3 , -4) and is parallel to the line y = -3x – 2

Slope and Perpendicular Lines 90° Two lines that intersect at a right angle (90°) are said to be perpendicular. There is a relationship between the slopes of perpendicular lines. Slope and Perpendicular Lines If two non-vertical lines are perpendicular, then the product of their slopes is –1. If the product of the slopes of two lines is –1, then the lines are perpendicular. A horizontal line having zero slope is perpendicular to a vertical line having undefined slope.

Perpendicular Lines Perpendicular lines have negative reciprocal slopes so if you need the slope of a line perpendicular to a given line, simply find the slope of the given line, take its reciprocal (flip it over) and make it negative.

Example: Finding the Slope of a Line Perpendicular to a Given Line Find the slope of any line that is perpendicular to the line whose equation is x + 4y – 8 = 0. Solution We begin by writing the equation of the given line in slope-intercept form. Solve for y. x + 4y – 8 = 0 This is the given equation. 4y = -x + 8 To isolate the y-term, subtract x and add 8 on both sides. Slope is –1/4. y = -1/4x + 2 Divide both sides by 4. The given line has slope –1/4. Any line perpendicular to this line has a slope that is the negative reciprocal, 4.

Example: Writing the Equation of a Line Perpendicular to a Given Line Write the equation of the line perpendicular to x + 4y – 8 = 0 that passes thru the point (2,8) in standard form. Solution: The given line has slope –1/4. Any line perpendicular to this line has a slope that is the negative reciprocal, 4. So now we need know the perpendicular slope and are given a point (2,8). Plug this into the point-slope form and rearrange into the standard form. y – 8 = 4[x – (2)] y – y1 = m(x – x1) y1 = 8 m = 4 x1 = 2 y - 8 = 4x - 8 -4x + y = 0 4x – y = 0 Standard form

4 -1 2 y = - x 1 Let's look at a line and a point not on the line Let's find the equation of a line parallel to y = - x that passes through the point (2, 4) y = - x What is the slope of the first line, y = - x ? (2, 4) 1 This is in slope intercept form so y = mx + b which means the slope is –1. So we know the slope is –1 and it passes through (2, 4). Having the point and the slope, we can use the point-slope formula to find the equation of the line 4 -1 2 Distribute and then solve for y to leave in slope-intercept form.

4 1 2 y = - x What if we wanted perpendicular instead of parallel? Let's find the equation of a line perpendicular to y = - x that passes through the point (2, 4) y = - x The slope of the first line is still –1. (2, 4) The slope of a line perpendicular is the negative reciporical so take –1 and "flip" it over and make it negative. 4 1 2 Distribute and then solve for y to leave in slope-intercept form. So the slope of a perpendicular line is 1 and it passes through (2, 4).

Homework: 5.2 worksheet #’s 1-15 Due Monday, 12/9