Force vs. Torque Forces cause accelerations

Slides:



Advertisements
Similar presentations
Angular Quantities Correspondence between linear and rotational quantities:
Advertisements

Physics 111: Mechanics Lecture 12
Chapter-9 Rotational Dynamics
Rotational Equilibrium and Dynamics
Chapter 9 Rotational Dynamics.
Ch 9. Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation.
1 UCT PHY1025F: Mechanics Physics 1025F Mechanics Dr. Steve Peterson EQUILIBRIUM.
Physics Montwood High School R. Casao
A ladder with length L weighing 400 N rests against a vertical frictionless wall as shown below. The center of gravity of the ladder is at the center of.
Rotational Equilibrium and Rotational Dynamics
Physics 111: Mechanics Lecture 10 Dale Gary NJIT Physics Department.
Chapter 9 – Rotational Dynamics
Rotational Equilibrium and Rotational Dynamics
Torque and Equilibrium Lecture 8 Pre-reading : KJF §8.1 and 8.2.
Rotational Dynamics and Static Equilibrium. Torque From experience, we know that the same force will be much more effective at rotating an object such.
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
Torque and Rotational Equilibrium
Rotational Equilibrium
Rotational Equilibrium and Rotational Dynamics
Torque Torque is an influence which tends to change the rotational motion of an object. One way to quantify a torque is Torque = Force applied x lever.
Chapter 4 : statics 4-1 Torque Torque, , is the tendency of a force to rotate an object about some axis is an action that causes objects to rotate. Torque.
Physics 106: Mechanics Lecture 07
Static Equilibrium And Elasticity (Keseimbangan Statik dan Kekenyalan)
Physics 106: Mechanics Lecture 08
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I November 17, 2006.
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I November 13, 2006.
Physics 106: Mechanics Lecture 02
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I November 15, 2006.
Chapter 8 Rotational Equilibrium and Rotational Dynamics.
Rotational Equilibrium and Rotational Dynamics
Chapter-9 Rotational Dynamics. Translational and Rotational Motion.
Chapter 9 Static Equilibrium; Elasticity and Fracture
Chapter 9 Torque.
Chapter 10 Rotation of a Rigid Object about a Fixed Axis.
Rotation Rotational Variables Angular Vectors Linear and Angular Variables Rotational Kinetic Energy Rotational Inertia Parallel Axis Theorem Newton’s.
Rotational Equilibrium and Rotational Dynamics
Chapter 9: Rotational Dynamics
Rotational Motion Honors Physics. Rotational Motion Objectives: Learn how to describe and measure rotational motion Learn how torque changes rotational.
Chapter 8 Rotational Dynamics and Static Equilibrium
Forces and Newton’s Laws of Motion. 4.1 The Concepts of Force and Mass A force is a push or a pull. Arrows are used to represent forces. The length of.
Chapter 8 Rotational Motion.
Chapter 8 Statics Statics. Equilibrium An object either at rest or moving with a constant velocity is said to be in equilibrium An object either at rest.
Center of Mass Torque. Center of Mass When analyzing the motion of an extended object, we treat the entire object as if its mass were contained in a single.
Static Equilibrium and Elasticity
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
Physics CHAPTER 8 ROTATIONAL MOTION. The Radian  The radian is a unit of angular measure  The radian can be defined as the arc length s along a circle.
Rotational Motion 1. Translational Motion vs. Rotational Motion Translational motion ___________ ______________________________ Example: motion of a bullet.
Chapter 9 Rotational Dynamics.
Chapters 7 & 8 The Law of Gravity and Rotational Motion.
Chapter 11 Equilibrium. If an object is in equilibrium then its motion is not changing. Therefore, according to Newton's second law, the net force must.
Torque 10.3 (pages 490 – 502). Friday Fun… Unravelled What did you learn? What does it mean to balance? –For an object to balance, you must use the centre.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
Chapter 12 Lecture 21: Static Equilibrium and Elasticity: I HW8 (problems):11.7, 11.25, 11.39, 11.58, 12.5, 12.24, 12.35, Due on Friday, April 1.
Chapter 8 Rotational Equilibrium and Rotational Dynamics
Ying Yi PhD Chapter 9 Rotational Dynamics 1 PHYS HCC.
Monday, Apr. 14, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #21 Monday, Apr. 14, 2008 Dr. Jaehoon Yu Rolling Motion.
1 Rotational Dynamics The Action of Forces and Torques on Rigid Objects Chapter 9 Lesson 2 (a) Translation (b) Combined translation and rotation.
Chapter 9 Rotational Dynamics.
Circular Motion.
Torque.
Physics 103: Lecture 14 Rotations of Extended Objects
Chapter 12. Rotation of a Rigid Body
Rotational Dynamics Chapter 9.
9.1 Torque 1.
Static Equilibrium Chapter 9 Sec. 1 & 2.
PHYS 1443 – Section 003 Lecture #17
The Law of Gravity and Rotational Motion
Rotational Statics i.e. “Torque”
Tor-que? Statics II.
Presentation transcript:

Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related

Torque The door is free to rotate about an axis through O There are three factors that determine the effectiveness of the force in opening the door: The magnitude of the force The position of the application of the force The angle at which the force is applied

Torque, cont Torque, t, is the tendency of a force to rotate an object about some axis t = r F t is the torque F is the force symbol is the Greek tau r is the length of the position vector SI unit is N.m

Direction of Torque Torque is a vector quantity The direction is perpendicular to the plane determined by the position vector and the force If the turning tendency of the force is counterclockwise, the torque will be positive If the turning tendency is clockwise, the torque will be negative

Multiple Torques When two or more torques are acting on an object, the torques are added As vectors If the net torque is zero, the object’s rate of rotation doesn’t change

General Definition of Torque The applied force is not always perpendicular to the position vector The component of the force perpendicular to the object will cause it to rotate

General Definition of Torque, cont When the force is parallel to the position vector, no rotation occurs When the force is at some angle, the perpendicular component causes the rotation

General Definition of Torque, final Taking the angle into account leads to a more general definition of torque: t = r F sin q F is the force r is the position vector q is the angle between the force and the position vector

Lever Arm The lever arm, d, is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force d = r sin q

Net Torque The net torque is the sum of all the torques produced by all the forces Remember to account for the direction of the tendency for rotation Counterclockwise torques are positive Clockwise torques are negative

Torque and Equilibrium First Condition of Equilibrium The net external force must be zero This is a necessary, but not sufficient, condition to ensure that an object is in complete mechanical equilibrium This is a statement of translational equilibrium

Torque and Equilibrium, cont To ensure mechanical equilibrium, you need to ensure rotational equilibrium as well as translational The Second Condition of Equilibrium states The net external torque must be zero

Equilibrium Example The woman, mass m, sits on the left end of the see-saw The man, mass M, sits where the see-saw will be balanced Apply the Second Condition of Equilibrium and solve for the unknown distance, x

Axis of Rotation If the object is in equilibrium, it does not matter where you put the axis of rotation for calculating the net torque The location of the axis of rotation is completely arbitrary Often the nature of the problem will suggest a convenient location for the axis When solving a problem, you must specify an axis of rotation Once you have chosen an axis, you must maintain that choice consistently throughout the problem

Center of Gravity The force of gravity acting on an object must be considered In finding the torque produced by the force of gravity, all of the weight of the object can be considered to be concentrated at a single point

Notes About Equilibrium A zero net torque does not mean the absence of rotational motion An object that rotates at uniform angular velocity can be under the influence of a zero net torque This is analogous to the translational situation where a zero net force does not mean the object is not in motion

Solving Equilibrium Problems Draw a diagram of the system Include coordinates and choose a rotation axis Isolate the object being analyzed and draw a free body diagram showing all the external forces acting on the object For systems containing more than one object, draw a separate free body diagram for each object

Problem Solving, cont. Apply the Second Condition of Equilibrium This will yield a single equation, often with one unknown which can be solved immediately Apply the First Condition of Equilibrium This will give you two more equations Solve the resulting simultaneous equations for all of the unknowns Solving by substitution is generally easiest

Example of a Free Body Diagram (Forearm) Isolate the object to be analyzed Draw the free body diagram for that object Include all the external forces acting on the object

Example of a Free Body Diagram (Beam) The free body diagram includes the directions of the forces The weights act through the centers of gravity of their objects

Example of a Free Body Diagram (Ladder) The free body diagram shows the normal force and the force of static friction acting on the ladder at the ground The last diagram shows the lever arms for the forces