Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.

Slides:



Advertisements
Similar presentations
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Advertisements

GZK cutoff and constraints on the Lorentz invariance violation Bi Xiao-Jun (IHEP) 2011/5/9.
Status of Top-Down Models for the Origin of Ultra-High Energy Cosmic Rays I. Observation of ultra-high energy cosmic rays before the Pierre Auger Observatory.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
GZK Horizons and the Recent Pierre Auger Result on the Anisotropy of Highest-energy Cosmic Ray Sources Chia-Chun Lu Institute of Physics, National Chiao-Tung.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
Magnetic Field Workshop November 2007 Constraints on Astrophysical Magnetic Fields from UHE Cosmic Rays Roger Clay, University of Adelaide based on work.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
What can we learn from the GZK feature? Angela V. Olinto Astronomy & Astrophysics Kavli Institute Cosmol.Phys. Enrico Fermi Institute University of Chicago.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
Counting Cosmic Rays through the passage of matter By Edwin Antillon.
What is cosmic radiation and where does it come from? Frederik Rühr, Kirchhoff-Institut für Physik, Universität Heidelberg IRTG Seminar, 26. Oktober 2007.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
The National Science FoundationThe Kavli Foundation Mapping the Ultra-high--energy Cosmic-ray Sky with the Pierre Auger Observatory Vasiliki Pavlidou for.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Ultra high energy cosmic rays Donna Kubik Spring, 2005.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
Probing Extreme Universe through Ultra-High Energy Cosmic Ray Yamamoto Tokonatsu Konan University, Japan Introduction UHECR observation Recent results.
La nascita della astronomia dei raggi cosmici? Indicazioni dall' Osservatorio P. Auger Aurelio F. Grillo Teramo 8/05/08.
Konstantin Belov. GZK-40, Moscow. Konstantin Belov High Resolution Fly’s Eye (HiRes) Collaboration GZK-40. INR, Moscow. May 17, measurements by fluorescence.
TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida.
Testing Lorentz Invariance with UHECR Spectrum Li Ye IHEP, CAS, Sep. 26, 2008.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
Ultra High Energy Cosmic Rays: Strangers Shrouded In Mystery Scott Fleming High Energy Series 24 Feb
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Mar 9, 2005 GZK Neutrinos Theory and Observation D. Seckel, Univ. of Delaware.
Propagation of Ultra-high Energy Cosmic Rays in Local Magnetic Fields Hajime Takami (Univ. of Tokyo) Collaborator: Katsuhiko Sato (Univ. of Tokyo, RESCEU)
Telescope Array Experiment: Status and Prospects Pierre Sokolsky University of Utah.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio Quarks-08.
Fitting the HiRes Data Douglas Bergman Rutgers University 28 April 2005.
Correlation of the UHECR with AGN using the new statistical test methods and the updated data from Pierre Auger Observatory Hang Bae Kim (Hanyang Univ.)
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
AGASA Results Masahiro Teshima for AGASA collaboration
Ultra-High Energy Neutrino Fluxes Günter Sigl GReCO, Institut d’Astrophysique de Paris, CNRS  Neutrinos: A.
Laboratory Particle- Astrophysics P. Sokolsky High Energy Astrophysics Institute, Univ. of Utah.
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
Cosmic Rays High Energy Astrophysics
52° Congresso SAIt 2008 Raffaella Bonino* for the Pierre Auger Collaboration ( * ) IFSI – INFN – Università di Torino.
Propagation and Composition of Ultra High Energy Cosmic Rays
Neutrinos and Z-bursts Dmitry Semikoz UCLA (Los Angeles) & INR (Moscow)
1 CEA mercredi 26 novembre 2007 Latest news from the Pierre Auger Observatory Nicolas G. Busca - APC - Paris 7.
Current Physics Results Gordon Thomson Rutgers University.
Recent Results from the HiRes Experiment Chad Finley UW Madison for the HiRes Collaboration TeV Particle Astrophysics II Madison WI 2006 August 28.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio UHECR-08.
March 22, 2005Icecube Collaboration Meeting, LBL How guaranteed are GZK ’s ? How guaranteed are GZK ’s ? Carlos Pena Garay IAS, Princeton ~
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
Astrophysics of the Highest Energy Cosmic Rays Paul Sommers Cracow, Poland January 10, 2004.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
AGASA Results Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
High Energy Cosmic Rays The Primary Particle Types Paul Sommers for Alan Watson Epiphany Conference, Cracow January 10, 2004.
Jim Matthews Louisiana State University Results from the Pierre Auger Observatory ECRS, Moscow, 4 July
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
On the Galactic Center being the main source of Galactic Cosmic Rays as evidenced by recent cosmic ray and gamma ray observations Yiqing Guo, Zhaoyang.
Signatures of Protons in UHECR Transition from Galactic to
Cosmogenic Neutrinos challenge the Proton Dip Model
UHECR source searches and magnetic fields
Haoning He(RIKEN/UCLA/PMO)
ultra high energy cosmic rays: theoretical aspects
Predictions of Ultra - High Energy Neutrino fluxes
Shigeru Yoshida and Aya Ishihara
Wei Wang National Astronomical Observatories, Beijing
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR SOURCES INR RAS, Moscow, 17 May 2006 *

Overview Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Motivation Propagation of protons and nuclei compared Typical propagated spectrum of protons and nuclei Fitting AGASA and HiRes spectra Conclusion

GZK problem Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 All experiments have registered events above 100 EeV HiRes is claimed to be consistent with GZK cutoff provided that UHECR sources are close enough, however no evident sources has been found yet within GZK sphere

Possible solutions Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006

Possible solutions Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Top-Down models: Topological defects Z-burst

Possible models Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Top-Down models (disfavored?) : Topological defects Z-burst AGASA muon measurements γ -ray fraction predicted is close to experimental bounds! Gelmini, Kalashev, Semikoz astro-ph/ Current experimental limitations on γ ray flux on 95% CL: AGASA, Yakutsk combined (astro-ph/ G.I.Rubtsov et al) 36% above 100EeV Pierre-Auger (M.Risse, ICRC 2005) 26% above 10EeV

Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Top-Down models (disfavored?) : Topological defects Z-burst Acceleration (bottom-up) models: Possible models

Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Top-Down models (disfavored?) : Topological defects Z-burst Acceleration (bottom-up) models: + Don’t require new physics

Possible models Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Top-Down models (disfavored?) : Topological defects Z-burst Acceleration (bottom-up) models: + Don’t require new physics Hard to achieve energies above 100 EeV (possibly extreme astrophysics needed) _

Possible models Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Top-Down models (disfavored?) : Topological defects Z-burst Acceleration (bottom-up) models: protons nuclei

Possible models Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Top-Down models (disfavored?) : Topological defects Z-burst Acceleration (bottom-up) models: protons Most natural UHECR candidate as most abundant element in the universe nuclei

Possible models Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Top-Down models (disfavored?) : Topological defects Z-burst Acceleration (bottom-up) models: protons Most natural UHECR candidate as most abundant element in the universe nuclei More efficient acceleration and isotropisation

Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Propagation of Ultra High Energy Cosmic Rays

Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Propagation of Ultra High Energy Cosmic Rays A. Uryson – next talk

Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Main Factors influenc ing UHECR propagation Microwave Photon Background (MWB) Random Extragalactic Magnetic Field (EGMF) G IR/Optic radiation e, γ p, n Nuclei photodisintegration Pair production synchrotron ICS, e + e - production  & e + e - production , e+e-, photodisintegration deflection ? Radio background (RB) ?

Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Simulating UHECR propagation Photodisintegration e+e- pair production  production F.Stecker et al. Astrophys.J. 512 (1999) E.Khan et al. Astropart.Phys. 23 (2005) M.J.Chodorowski et al. Astrophys.J.400,181(1992) A.Mucke et al.,Comp.Phys.Comm.124,290(2000) Extragalactic magnetic field K.Dolag et al., ICRC 2003 proceedings Infrared background Sigl et al. astro-ph/ F.Stecker et al. astro-ph/

Energy loss length - Fe Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006

Energy loss length – Fe and p Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006

Phenomenological source model Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) ParameterName Values Power of the Injection Spectrum, E -   End point of the Energy Spectrum Σ max Evolution factor: (1+z) 3+m m0 ± 3 Red shift of the nearest sourcez min Maximal source redshift z max 3 z – red shift, Θ(x)- step function, E max = Z Σ max, Z- electric charge

Dependence on  Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Protons E max = 6 x eV m = 0 z min = 0 Best fit (HiRes) α= 2.6

Dependence on  Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Fe primaries Σ max = 6 x eV m = 0 z min = 0 Best fit (HiRes) α= 2.4

Dependence on E max Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Protons α = 2 m = 0 z min = 0

Dependence on E max Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Fe primaries α = 2 m = 0 z min = 0 E max =26 x

Dependence on Z min Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Protons α = 2.65 m = 0 E max = 3 x eV

Dependence on m Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) He primaries α = 2.3 E max = 5 x eV z min = 0

Composition of the propagated cascade Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Nuclei with E > EeV are subjected to photodisintegration Even if primary source composition consisted of single atomic number the propagated spectrum should contain products of photodisintegration Photodisintegration kinematics E A` = E A A`/A m A, m A’, m p >> k ~ 10 MeV k – background photon energy in the nucleus rest frame γ = const k th =f( γ, A) γ = const -photodisintegration chain continues

Composition dependence on E max Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Fe primaries α = 2 m = 0 z min = 0 Mean atomic number in the cascade Fe ≡ Σ A i F i / F tot F i – flux of A i Σ max

Composition dependence on E max Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Fe and O primaries α = 2 m = 0 z min = 0 Fe O Mean atomic number in the cascade ≡ Σ A i F i / F tot F i – flux of A i Σ max

Composition dependence on E max Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Fe and O primaries α = 2 m = 0 z min = 0 Fe O Mean atomic number in the cascade ≡ Σ A i F i / F tot F i – flux of A i Σ max

Fitting experimental spectra* Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 F(E, z) = f E - α (1+z) 3+m Θ(E max - E) Θ(z-z min ) Θ(z max -z) Source model Lower energy component (LEC) if needed F LEC (E) = f o (E/E o ) - β exp(-E/E o ) where β = 2.7, E o = 10 EeV, f o – free normalization parameter Here we assume that LEC has galactic origin and so we neglect propagation effects, however one can show that spectrum of the form close to (2) can be obtained as a result of propagation of extragalactic protons or nuclei from the source like (1). + (2) (1) * O. Kalashev, J. Lee, K. Arisaka, G. Gelmini work in preparation The fit is done above 3 EeV

HiRes stereo and mono combined fit Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 α = 2.6 ; E max = eV; m=0; z min =0 Proton source + LEC

HiRes stereo and mono combined fit Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 α = 2.6 ; E max = eV; m=0; z min =0 Proton source + LEC α = 2.1÷2.7 (α = 2.5÷2.7 if no LEC assumed) E max ≥ eV m ≤ 0 Z min <0.01 (50Mpc)

HiRes stereo and mono combined fit Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 He source + LEC α = 2.3 ; E max = 5x10 21 eV; m=0; z min =0 α = 2.2÷2.3 E max > eV Z min <0.02 (100Mpc) -2≤ m ≤ 2 lg(Σ max /eV)

HiRes stereo and mono combined fit Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 α = 1.4 ; E max = 2.6x10 20 eV; m=0; z min =0 Fe source + LEC lg(Σ max /eV) α = 1.0÷2.0 E max = eV -3≤ m ≤ 3 works fine Z min <0.05 (250Mpc)

HiRes stereo and mono combined fit Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 α = 1.4 ; E max = 2.6x10 20 eV; m=0; z min =0 Fe source + LEC lg(Σ max /eV) α = 1.0÷2.0 E max = eV -3≤ m ≤ 3 works fine Z min <0.05 (250Mpc) More heavy elements

HiRes stereo and mono combined fit Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 α = 1.4 ; E max = 2.6x10 20 eV; m=0; z min =0 Fe source + LEC lg(Σ max /eV) α = 1.0÷2.0 E max = eV -3≤ m ≤ 3 works fine Z min <0.05 (250Mpc) More protons

Conclusions Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Nuclei-reach sources may explain UHECR spectrum as well as pure proton sources. + Nuclei sources models with low enough E max may be less limited in terms of distance to the closest source (250 Mpc compared to 50 Mpc for HiRes) +/- Lot of parameters to play with _ LEC is normally required _ Composition study made so far by AGASA and HiRes does not support heavy nuclei as primaries for the showers More accurate composition study will clear the picture

Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006

Protons versus nuclei Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 AGASA, ICRC 2005, K.Shinozaki at al Experimental limitations

Appendix Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006

AGASA fitting attempts Oleg Kalashev GZK 40, INR RAS, Moscow, 17 May 2006 Iron Iron E max = 2.6x10 20 eV; m=0; z min =0 Protons Protons E max = eV; m=0; z min =0