Chapter 29 Plant Diversity.

Slides:



Advertisements
Similar presentations
Plant Diversity I How Plants Colonized Land
Advertisements

29 Plant Diversity I: How Plants Colonized Land
The Plant Kingdom Origins MYA 10 Phyla 4 Basic lifecycles Green algae that evolved onto land Evolved becoming more terrestrial, independent from.
Plant Diversity I How Plants Colonized Land
Plant Diversity I How Plants Colonized Land Chapter 29.
Chapter 26: The Plant Kingdom: Seedless Plants
Fig Table 29-1 Fig Origin of land plants (about 475 mya) Origin of vascular plants (about 420 mya) Origin of extant seed plants.
Create a timeline with the following events:
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Plant Diversity I: How Plants Colonized Land
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Plant Diversity I: How Plants Colonized Land
Fig. 17-0c Diversity of plant life Charophytes (algae) Extinct seedless plants (origin of fossil fuels) Simple mosses Dry land adaptations.
Chapter 29 Plant Diversity I
Plant Diversity I How Plants Colonized Land. Closest relatives??? Green algae called charophyceans are the closest relatives of land plants Green algae.
Plant Diversity.
Plant Diversity I: How Plants Colonized Land
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings The TLCC Has Free Tutoring Not happy with your grade? Need help understanding.
Plant Diversity I: How Plants Colonized Land (Ch.29)
Plant Diversity I: How Plants Colonized Land
Ch 17/31 The Origin and Diversification of Plants
Plant Diversity I Chapter 29. Introduction to Plants  Multicellular, ________, photosynthetic autotrophs  Cell walls made of cellulose  More than 290,000.
Plant Diversity I: How Plants Colonized Land
Topic 13 Introduction to the Kingdom Plantae Biology 1001 November 2, 2005.
Plant Diversity: How Plants Colonized Land
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 29.1: Land plants evolved from green algae Green algae called.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Chapter 29 Evolution of Land Plants. Overview Plants can be described as multicellular, eukaryotic, photosynthetic autotrophs Four main groups:  Bryophytes.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 29: How plants colonized the land - the greening of earth
Plant Diversity Chapter
Plant Diversity Chapters 29 & 30 Biology – Campbell Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 29: Bryophytes & Ferns
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 29.  500 mya plants and fungi moved from the land to the water  All plants evolved from an aquatic green algae  In Kingdom Plantae, there are.
Copyright © 2005 Pearson Education, Inc. Publishing as Benjamin Cummings PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition – Campbell,
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Aquatic Plants: Non-Vascular Plants and Ferns. Evolution of Plants Plants are thought to have evolved from green algae The green algae called charophyceans.
Non-Vascular Plants and Ferns
Plant Diversity I: How Plants Colonized Land
Chapter 29 Plant Diversity I: How Plants Colonized Land
Rosette cellulose-synthesizing complexes Found only in land plants and charophycean green algae Figure 29.2 Rosette cellulose-synthesizing complexes 30.
Plant evolution Land plants evolved from green algae
How Plants Colonized Land
Plant Diversity I How Plants Colonized Land
Plant Diversity I How Plants Colonized Land
Plant Diversity I: How Plants Colonized Land
“Man is the most insane species
Plant Diversity I: How Plants Colonized Land
BRYOPHYTES Syed Abdullah Gilani.
Plant Diversity I: How Plants Colonized Land
Plant Diversity I How Plants Colonized Land
Plant Diversity I How Plants Colonized Land
Plant Diversity I How Plants Colonized Land
Intro to Plants.
Plant Diversity I How Plants Colonized Land
Plant Diversity I How Plants Colonized Land
Plant Diversity I: How Plants Colonized Land
Plant Diversity I How Plants Colonized Land
Presentation transcript:

Chapter 29 Plant Diversity

You should now be able to: Describe four shared characteristics and four distinct characteristics between charophytes and land plants Diagram and label the life cycle of a bryophyte Explain why most bryophytes grow close to the ground and are restricted to periodically moist environments Describe three traits that characterize modern vascular plants and explain how these traits have contributed to success on land Explain how vascular plants differ from bryophytes Diagram and label the life cycle of a seedless vascular plant Explain why pollen grains were an important adaptation for successful reproduction on land Describe the life history of a pine; indicate which structures are part of the gametophyte generation and which are part of the sporophyte generation Identify and describe the function of the following floral structures: sepals, petals, stamens, carpels, filament, anther, stigma, style, ovary, and ovule

Overview: The Greening of Earth Looking at a lush landscape, it is difficult to imagine the land without any plants or other organisms For more than the first 3 billion years of Earth’s history, the terrestrial surface was lifeless Since colonizing land, plants have diversified into roughly 290,000 living species Plants supply oxygen and are the ultimate source of most food eaten by land animals

Land plants evolved from green algae Green algae called charophytes are the closest relatives of land plants However, land plants share four key traits only with charophytes: Rose-shaped complexes for cellulose synthesis Peroxisome enzymes Structure of flagellated sperm Formation of a phragmoplast (cell plate)

5 mm 40 µm Chara species, a pond organism Coleochaete orbicularis, a Fig. 29-3 Chara species, a pond organism 5 mm Coleochaete orbicularis, a disk-shaped charophyte that also lives in ponds (LM) Figure 29.3 Examples of charophytes, the closest algal relatives of land plants 40 µm

Adaptations Enabling the Move to Land In charophytes a layer of a durable polymer called sporopollenin prevents exposed zygotes from drying out The movement onto land by charophyte ancestors provided unfiltered sun, more plentiful CO2, nutrient-rich soil, and few herbivores or pathogens Land presented challenges: a scarcity of water and lack of structural support

Red algae ANCESTRAL ALGA Chlorophytes Viridiplantae Charophytes Fig. 29-4 Red algae ANCESTRAL ALGA Chlorophytes Viridiplantae Charophytes Figure 29.4 Three possible “plant” kingdoms Streptophyta Embryophytes Plantae

Derived Traits of Plants Four key traits appear in nearly all land plants but are absent in the charophytes: Alternation of generations (with multicellular, dependent embryos) Walled spores produced in sporangia Multicellular gametangia Apical meristems Cuticle Symbiotic associations between fungi and plants

1. Alternation of Generations and Multicellular, Dependent Embryos Plants alternate between two multicellular stages, a reproductive cycle called alternation of generations The gametophyte is haploid and produces haploid gametes by mitosis Fusion of the gametes gives rise to the diploid sporophyte, which produces haploid spores by meiosis The diploid embryo is retained within the tissue of the female gametophyte Nutrients are transferred from parent to embryo through placental transfer cells Land plants are called embryophytes because of the dependency of the embryo on the parent

Alternation of generations Fig. 29-5a Gamete from another plant Gametophyte (n) Mitosis Mitosis n n n n Spore Gamete MEIOSIS FERTILIZATION Zygote 2n Figure 29.5 Derived traits of land plants Mitosis Sporophyte (2n) Alternation of generations

Placental transfer cell (outlined in blue) Fig. 29-5b Embryo 2 µm Maternal tissue Figure 29.5 Derived traits of land plants Wall ingrowths 10 µm Placental transfer cell (outlined in blue) Embryo (LM) and placental transfer cell (TEM) of Marchantia (a liverwort)

2. Walled Spores Produced in Sporangia The sporophyte produces spores in organs called sporangia Diploid cells called sporocytes undergo meiosis to generate haploid spores Spore walls contain sporopollenin, which makes them resistant to harsh environments

Longitudinal section of Sphagnum sporangium (LM) Fig. 29-5c Spores Sporangium Longitudinal section of Sphagnum sporangium (LM) Figure 29.5 Derived traits of land plants Sporophyte Gametophyte Sporophytes and sporangia of Sphagnum (a moss)

3. Multicellular Gametangia Gametes are produced within organs called gametangia Female gametangia, called archegonia, produce eggs and are the site of fertilization Male gametangia, called antheridia, are the site of sperm production and release

Archegonia and antheridia of Marchantia (a liverwort) Fig. 29-5d Archegonium with egg Female gametophyte Antheridium with sperm Figure 29.5 Derived traits of land plants Male gametophyte Archegonia and antheridia of Marchantia (a liverwort)

Plants sustain continual growth in their apical meristems Cells from the apical meristems differentiate into various tissues Apical meristem of shoot Developing leaves 100 µm Root 100 µm

The Origin and Diversification of Plants Fossil evidence indicates that plants were on land at least 475 million years ago Nonvascular plants are commonly called bryophytes Seedless vascular plants can be divided into groups Lycophytes (club mosses and their relatives) Pterophytes (ferns and their relatives) Seed vascular plants can be divided into groups A seed is an embryo and nutrients surrounded by a protective coat Gymnosperms, the “naked seed” plants, including the conifers Angiosperms, the flowering plants

Figure 29.7 Highlights of plant evolution Origin of land plants (about 475 mya) 1 2 3 Origin of vascular plants (about 420 mya) Origin of extant seed plants (about 305 mya) ANCES- TRAL GREEN ALGA Liverworts Hornworts Mosses Lycophytes (club mosses, spike mosses, quillworts) Pterophytes (ferns, horsetails, whisk ferns) Gymnosperms Angiosperms Seed plants Seedless vascular plants Nonvascular (bryophytes) Land plants Vascular plants Millions of years ago (mya) 500 450 400 350 300 50 Figure 29.7 Highlights of plant evolution

Concept 29.2: Mosses and other nonvascular plants have life cycles dominated by gametophytes Bryophytes are represented today by three phyla of small herbaceous (nonwoody) plants: Liverworts, phylum Hepatophyta Hornworts, phylum Anthocerophyta Mosses, phylum Bryophyta

Bryophyte In all three bryophyte phyla, gametophytes are larger and longer-living than sporophytes Sporophytes are typically present only part of the time Moses are capable of inhabiting diverse and sometimes extreme environments, but are especially common in moist forests and wetlands Some mosses might help retain nitrogen in the soil

Marchantia polymorpha, a “thalloid” liverwort Fig. 29-9a Gametophore of female gametophyte Thallus Sporophyte Foot Seta Figure 29.9 Bryophyte diversity Capsule (sporangium) Marchantia polymorpha, a “thalloid” liverwort 500 µm Marchantia sporophyte (LM)

Plagiochila deltoidea, a “leafy” liverwort Fig. 29-9b Figure 29.9 Bryophyte diversity

An Anthoceros hornwort species Sporophyte Gametophyte Fig. 29-9c Figure 29.9 Bryophyte diversity Gametophyte

Polytrichum commune, hairy-cap moss Sporophyte (a sturdy Capsule Fig. 29-9d Polytrichum commune, hairy-cap moss Sporophyte (a sturdy plant that takes months to grow) Capsule Seta Figure 29.9 Bryophyte diversity Gametophyte

Figure 29.7 Highlights of plant evolution Origin of land plants (about 475 mya) 1 2 3 Origin of vascular plants (about 420 mya) Origin of extant seed plants (about 305 mya) ANCES- TRAL GREEN ALGA Liverworts Hornworts Mosses Lycophytes (club mosses, spike mosses, quillworts) Pterophytes (ferns, horsetails, whisk ferns) Gymnosperms Angiosperms Seed plants Seedless vascular plants Nonvascular (bryophytes) Land plants Vascular plants Millions of years ago (mya) 500 450 400 350 300 50 Figure 29.7 Highlights of plant evolution

Ferns and other seedless vascular plants were the first plants to grow tall Bryophytes and bryophyte-like plants were the prevalent vegetation during the first 100 million years of plant evolution Vascular plants began to diversify during the Devonian and Carboniferous periods Vascular tissue allowed these plants to grow tall Seedless vascular plants have flagellated sperm and are usually restricted to moist environments

Origins and Traits of Vascular Plants Living vascular plants are characterized by: Life cycles with dominant sporophytes Vascular tissues called xylem and phloem Well-developed roots and leaves In contrast with bryophytes, sporophytes of seedless vascular plants are the larger generation, as in the familiar leafy fern The gametophytes are tiny plants that grow on or below the soil surface

Key Haploid (n) Diploid (2n) Spore (n) Antheridium Young gametophyte Fig. 29-13-3 Key Haploid (n) Diploid (2n) Spore (n) Antheridium Young gametophyte Spore dispersal MEIOSIS Sporangium Mature gametophyte (n) Sperm Archegonium Egg Mature sporophyte (2n) Sporangium New sporophyte Zygote (2n) FERTILIZATION Sorus Figure 29.13 The life cycle of a fern Gametophyte Fiddlehead

Transport in Xylem and Phloem Vascular plants have two types of vascular tissue: xylem and phloem Xylem conducts most of the water and minerals and includes dead cells called tracheids Phloem consists of living cells and distributes sugars, amino acids, and other organic products Water-conducting cells are strengthened by lignin and provide structural support

Evolution of Roots Roots are organs that anchor vascular plants They enable vascular plants to absorb water and nutrients from the soil Roots may have evolved from subterranean stems Leaves are organs that increase the surface area of vascular plants, thereby capturing more solar energy that is used for photosynthesis Sporophylls are modified leaves with sporangia Sori are clusters of sporangia on the undersides of sporophylls

Homosporous spore production Fig. 29-UN3 Homosporous spore production Typically a bisexual gametophyte Eggs Sporangium on sporophyll Single type of spore Sperm Heterosporous spore production Megasporangium on megasporophyll Female gametophyte Megaspore Eggs Microsporangium on microsporophyll Microspore Male gametophyte Sperm

Classification of Seedless Vascular Plants There are two phyla of seedless vascular plants: Phylum Lycophyta includes club mosses, spike mosses, and quillworts Phylum Pterophyta includes ferns, horsetails, and whisk ferns and their relatives

Lycophytes (Phylum Lycophyta) Fig. 29-15a Lycophytes (Phylum Lycophyta) 2.5 cm Isoetes gunnii, a quillwort Strobili (clusters of sporophylls) Selaginella apoda, a spike moss Figure 29.15 Seedless vascular plant diversity 1 cm Diphasiastrum tristachyum, a club moss

Athyrium filix-femina, lady fern 25 cm Fig. 29-15f Figure 29.15 Seedless vascular plant diversity 25 cm

Equisetum arvense, field horsetail Vegetative stem Strobilus on Fig. 29-15g Equisetum arvense, field horsetail Vegetative stem Strobilus on fertile stem Figure 29.15 Seedless vascular plant diversity 1.5 cm

Psilotum nudum, a whisk fern 2.5 cm Fig. 29-15h Figure 29.15 Seedless vascular plant diversity 2.5 cm

Fig. 29-16 Figure 29.16 Artist’s conception of a Carboniferous forest based on fossil evidence

Figure 29.7 Highlights of plant evolution Origin of land plants (about 475 mya) 1 2 3 Origin of vascular plants (about 420 mya) Origin of extant seed plants (about 305 mya) ANCES- TRAL GREEN ALGA Liverworts Hornworts Mosses Lycophytes (club mosses, spike mosses, quillworts) Pterophytes (ferns, horsetails, whisk ferns) Gymnosperms Angiosperms Seed plants Seedless vascular plants Nonvascular (bryophytes) Land plants Vascular plants Millions of years ago (mya) 500 450 400 350 300 50 Figure 29.7 Highlights of plant evolution