Measurement and Significant Figures

Slides:



Advertisements
Similar presentations
Steps in the Scientific Method
Advertisements

Forensic Science.   Part 1 - number  Part 2 - scale (unit)  Examples:  20 grams  6.63 x Joule seconds Measurement - quantitative observation.
Measurement and Significant Figures
Uncertainty and Significant Figures Cartoon courtesy of Lab-initio.com.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 CHEMISTRY 101  Textbook: Zumdahl, 6 th Edition.
Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Scientific Notation & Significant Figures in Measurement Dr. Sonali Saha Chemistry Honors Fall 2014.
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Chapter to 1.5 Chemical Foundations. Chapter 1 Table of Contents Return to TOC Copyright © Cengage Learning. All rights reserved 1.1 Chemistry:
MeasurementsandCalculations. Numbers Numbers in science are different than in math. Numbers in science always refer to something grams 12 eggs.
Chemistry Chapter 2 MeasurementsandCalculations. Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating hypotheses -
Chapter 1 Introduction: Matter and Measurement. Steps in the Scientific Method 1.Observations - quantitative -  qualitative 2.Formulating hypotheses.
Chapter 2 “Scientific Measurement” Standards for Measurement Accuracy vs. Precision Significant Figures.
Significant Figures, Precision, and Accuracy. Significant Figures Significant figures are numbers that mean something when reporting a value. Just because.
Chapter 2: Scientific Method Cartoon courtesy of NearingZero.net.
Chemical Foundations. Steps in the Scientific Method 1. Observations -quantitative - qualitative 2.Formulating hypotheses - possible explanation for the.
Chemical Foundations. Steps in a Scientific Method (depends on particular problem) 1. Observations -quantitative - qualitative 2.Formulating hypotheses.
INTRODUCTION Matter And Measurement Steps in the Scientific Method 1.Observations - quantitative - qualitative 2.Formulating Hypotheses - possible explanation.
Measurement and Significant Figures
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Steps in the Scientific Method 1.Observations  quantitative  qualitative 2.Formulating.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Steps in the Scientific Method 1.Observations  quantitative  qualitative 2.Formulating.
Chemistry Chapter 1 Introduction, Measurement, Introduction, Measurement, and Problem Solving and Problem Solving.
Measurements in Chemistry MeasurementsandCalculations.
1 Measurements. 2 Nature of Measurement Measurement - quantitative observation consisting of 2 parts Part 1 - number Part 2 - scale (unit) Part 2 - scale.
Chemical Foundations. Nature of Measurement Part 1 - number Part 2 - scale (unit) Examples: 20 grams 6.63 x Joule seconds Measurement - quantitative.
Measurements & Calculations Chapter 2. Nature of Measurement Measurement - quantitative observation consisting of two parts: Part 1 - number Part 2 -
Section 5: Significant Figures Cartoon courtesy of Lab-initio.com Unit 1: Matter & Measurement.
The SI System of Measurement
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Chemical Foundations 1. Nature of Measurement Part 1 - number Part 2 - scale (unit) Examples: 20 grams 6.63 x Joule seconds Measurement - quantitative.
Scientific Notation & Significant Figures in Measurement.
“Scientific Measurement”. Measurements and Their Uncertainty OBJECTIVES: Convert measurements to scientific notation.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty. Significant figures.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Steps in the Scientific Method 1.Observations  quantitative  qualitative 2.Formulating.
Uncertainty and Significant Figures Cartoon courtesy of Lab-initio.com.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
1 CHEMISTRY 101 Dr. IsmailFasfous  Textbook : Raymond Chang, 10th Edition  Office Location: Chemistry Building, Room 212  Office Telephone: 4738 
Unit 0: Observation, Measurement and Calculations Cartoon courtesy of NearingZero.net.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
Unit 3: Measurement and Calculations Cartoon courtesy of NearingZero.net.
1 Book Website istry/7e/student_home.html.
Unit 0: Observation, Measurement and Calculations
Uncertainty and Significant Figures
How big is the beetle? Measure between the head and the tail!
Uncertainty and Significant Figures
Scientific Measurement
Chemical Foundations.
Unit 3: Measurement and Calculations
Uncertainty and Significant Figures
Measurement and Significant Figures
Math Toolkit ACCURACY, PRECISION & ERROR.
Uncertainty and Significant Figures
Measurement and Significant Figures
Chemical Foundations.
Uncertainty and Significant Figures
Book Website
Section 2.3 Uncertainty in Data
Chapter 2.1: Measurements & Calculations West Valley High School
Uncertainty and Significant Figures
Chemistry Chapter 2 Measurements and Calculations Notes 2.
Uncertainty and Significant Figures
Measurements and Calculations.
Uncertainty and Significant Figures
Uncertainty and Significant Figures
Steps in the Scientific Method
Uncertainty and Significant Figures
Steps in the Scientific Method
Chapter 2A: Measurements & Calculations West Valley High School
Presentation transcript:

Measurement and Significant Figures www.lab-initio.com

Steps in the Scientific Method 1. Pose problem; Make Observations - quantitative (numerical) Ex: length, height, mass. Benefits: non-biased - qualitative (descriptive) Ex: color, smell, taste. Drawback: biased (opinion) 2. Formulating hypotheses - possible explanation for the observation 3. Performing experiments - gathering new information to decide whether the hypothesis is valid

Outcomes Over the Long-Term Theory (Model) - A set of tested hypotheses that give an overall explanation of some natural phenomenon. Natural Law - The same observation applies to many different systems

A law summarizes what happens Law vs. Theory A law summarizes what happens A theory (model) is an attempt to explain why it happens. Einstein's theory of gravity describes gravitational forces in terms of the curvature of spacetime caused by the presence of mass

Nature of Measurement Part 2 - scale (unit) A measurement is a quantitative observation consisting of 2 parts: Part 1 - number Part 2 - scale (unit) Examples: 20 grams 6.63 x 10-34 Joule·seconds

The Fundamental SI Units (le Système International, SI)

SI Units

Derived Units A derived unit is calculated by doing some mathematical operation. For Example: Volume = L x w x h Ex: m3 or cm3 Volume is a 3-dimensional measurement that measures how much space an object occupies A common volume measurement used in Chemistry is the Liter (L) and/or the milliliter (ml) Area = L x w Ex: m2

Celsius & Kelvin

SI Prefixes Common to Chemistry

Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty. Measurements are performed with instruments No instrument can read to an infinite number of decimal places

Precision and Accuracy Accuracy refers to the agreement of a particular value with the true value. Precision refers to the degree of agreement among several measurements made in the same manner. Neither accurate nor precise Precise but not accurate Precise AND accurate

Types of Error Percent Error: The percent error indicates how far off an observed result (collected data) is from the actual value. If a mass of 15.4 is obtained from a lab scale and the actual value should have been 20.0g, the percent error is calculated as: %error = /observed – expected/ x 100 or /15.4 g – 20.0g/ x 100 = 23% expected 20.0g Absolute Error or “Error Digit” Every measurement in the laboratory comes with some uncertainty. The uncertain digit is always the rightmost digit, or the last digit in the measurement. When using a device such as a graduated cylinder or metric ruler, the actual measurement may fall between two graduation marks on the device. Therefore, the last number is estimated and is “uncertain.” The measurement lies between the graduations and is written as +/- the distance of the graduated unit. For Example: The reading on the graduated cylinder below The reading in this beaker would be recorded as: is 48 ml +/- 10 ml 36.2 ml +/- 1 ml where the 8 is estimated The 2 is estimated

Examples of Absolute Error in readings that come from a measuring device such as a scale, graduated cylinder or ruler. A scale that gave the reading: 1.456 g. The error is +/- 0.001 g (the smallest reading on the scale A reading from a graduated cylinder that reads 45.67ml has a error of +/- 0.01 ml, or the smallest reading from the device. A length measurement from a device that reads 1.2578 m has an error of +/- 0.0001 m, or the smallest reading from the device.

Rules for Counting Significant Figures - Details Nonzero integers always count as significant figures. 3456 has 4 sig figs.

Rules for Counting Significant Figures - Details Zeros - Leading zeros do not count as significant figures. 0.0486 has 3 sig figs.

Rules for Counting Significant Figures - Details Zeros - Captive zeros always count as significant figures. 16.07 has 4 sig figs.

Rules for Counting Significant Figures - Details Zeros Trailing zeros are significant only if the number contains a decimal point. 9.300 has 4 sig figs.

Rules for Counting Significant Figures - Details Exact numbers have an infinite number of significant figures. 1 inch = 2.54 cm, exactly

Sig Fig Practice #1 1.0070 m  5 sig figs 17.10 kg  4 sig figs How many significant figures in each of the following? 1.0070 m  5 sig figs 17.10 kg  4 sig figs 100,890 L  5 sig figs 3.29 x 103 s  3 sig figs 0.0054 cm  2 sig figs 3,200,000  2 sig figs

Rules for Significant Figures in Mathematical Operations Multiplication and Division: # sig figs in the result equals the number in the least precise measurement used in the calculation. 6.38 x 2.0 = 12.76  13 (2 sig figs)

Sig Fig Practice #2 Calculation Calculator says: Answer 3.24 m x 7.0 m 100.0 g ÷ 23.7 cm3 4.219409283 g/cm3 4.22 g/cm3 0.02 cm x 2.371 cm 0.04742 cm2 0.05 cm2 710 m ÷ 3.0 s 236.6666667 m/s 240 m/s 1818.2 lb x 3.23 ft 5872.786 lb·ft 5870 lb·ft 1.030 g ÷ 2.87 mL 2.9561 g/mL 2.96 g/mL

Rules for Significant Figures in Mathematical Operations Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement. 6.8 + 11.934 = 18.734  18.7 (3 sig figs)

Sig Fig Practice #3 Calculation Calculator says: Answer 3.24 m + 7.0 m 100.0 g - 23.73 g 76.27 g 76.3 g 0.02 cm + 2.371 cm 2.391 cm 2.39 cm 713.1 L - 3.872 L 709.228 L 709.2 L 1818.2 lb + 3.37 lb 1821.57 lb 1821.6 lb 2.030 mL - 1.870 mL 0.16 mL 0.160 mL