The Basic Elements and Phasors

Slides:



Advertisements
Similar presentations
Since Therefore Since.
Advertisements

REVIEW OF COMPLEX NUMBERS
Complex Numbers for AC Circuits Topics Covered in Chapter : Positive and Negative Numbers 24-2: The j Operator 24-3: Definition of a Complex Number.
Chapter 12 RL Circuits.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 25 Nonsinusoidal Circuits.
1 Electrical Engineering BA (B), Analog Electronics, Lecture 2 ET065G 6 Credits ET064G 7.5 Credits Muhammad Amir Yousaf.
Department of Electronic Engineering BASIC ELECTRONIC ENGINEERING Steady-State Sinusoidal Analysis.
Sinusoidal Steady-State Power Calculations
Phasors ET 242 Circuit Analysis II Electrical and Telecommunication
Response of Basic Elements to AC Input ET 242 Circuit Analysis Electrical and Telecommunication Engineering Technology Professor Jang.
Steady-State Sinusoidal Analysis
AC Review Discussion D12.2. Passive Circuit Elements i i i + -
R,L, and C Elements and the Impedance Concept
SINUSOIDAL ALTERNATING WAVEFORMS
Power (ac).
Chapter 14 – Basic Elements and Phasors Lecture 15 by Moeen Ghiyas 09/08/
ELECTRIC CIRCUIT ANALYSIS - I
ELECTRIC CIRCUIT ANALYSIS - I
Fundamentals of Electric Circuits Chapter 11
Series and Parallel AC Circuits
Chapter 4 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Series and Parallel ac Circuits.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 24 Physics, 4 th Edition James S. Walker.
ELECTRICAL CIRCUIT ET 201 Define and explain characteristics of sinusoidal wave, phase relationships and phase shifting.
Average Power and Power Factor ET 242 Circuit Analysis II Electrical and Telecommunication Engineering Technology Professor Jang.
Fundamentals of Electric Circuits Chapter 11
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 20 Resonance.
Kent Bertilsson Muhammad Amir Yousaf. DC and AC Circuit analysis  Circuit analysis is the process of finding the voltages across, and the currents through,
Chapter 14 – The Basic Elements and Phasors
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 20 Resonance.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 16 Phasor Circuits, AC.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 13 Sinusoidal Alternating.
Chapter 5 Steady-State Sinusoidal Analysis. 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2.
EE2010 Fundamentals of Electric Circuits Lecture 13 Sinusoidal sources and the concept of phasor in circuit analysis.
Fundamentals of Electric Circuits Chapter 9
AC POWER ANALYSIS Instantaneous & Average Power
Fundamentals of Electric Circuits Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 5 Series dc Circuits.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 14 The Basic Elements.
1 ET 201 ~ ELECTRICAL CIRCUITS COMPLEX NUMBER SYSTEM  Define and explain complex number  Rectangular form  Polar form  Mathematical operations (CHAPTER.
1 ELECTRICAL CIRCUIT ET 201  Define and explain phasors, time and phasor domain, phasor diagram.  Analyze circuit by using phasors and complex numbers.
Fundamentals of Electric Circuits Chapter 9
1 ELECTRICAL TECHNOLOGY EET 103/4  Define and explain sine wave, frequency, amplitude, phase angle, complex number  Define, analyze and calculate impedance,
1 ELECTRICAL TECHNOLOGY ET 201  Define series impedances and analyze series AC circuits using circuit techniques.
1 ELECTRICAL TECHNOLOGY EET 103/4  Define and explain sine wave, frequency, amplitude, phase angle, complex number  Define, analyze and calculate impedance,
ELECTRICAL TECHNOLOGY EET 103/4
ELECTRICA L ENGINEERING Principles and Applications SECOND EDITION ALLAN R. HAMBLEY ©2002 Prentice-Hall, Inc. Chapter 5 Steady-State Sinusoidal Analysis.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 9 Network Theorems.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 18 Network Theorems (AC)
Chapter 14 – Basic Elements and Phasors Lecture 17 by Moeen Ghiyas 13/12/
T RANSIENTS AND S TEP R ESPONSES ELCT222- Lecture Notes University of S. Carolina Fall2011.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 16 Series-Parallel ac.
Series and Parallel ac Circuits.
Applied Circuit Analysis Chapter 12 Phasors and Impedance Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
AC POWER & POWER FACTOR. Lesson Objectives  Compute and define apparent, reactive, and average power for capacitors, inductors, and resistors.  Compute.
Chapter 15 Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd © 2010 Pearson Higher Education, Upper Saddle River, NJ All Rights.
Chapter 13 The Basic Elements and Phasors. Objectives Be able to add and subtract sinusoidal voltages or currents Use phasor format to add and subtract.
1 AC Circuit Theory. 2 Sinusoidal AC Voltage Waveform: The path traced by a quantity, such as voltage, plotted as a function of some variable such as.
Chapter 14 Series and Parallel AC Circuits. Objectives Become familiar with the characteristics of a series and parallel ac circuit Find the total impedance.
ELECTRIC CIRCUITS EIGHTH EDITION JAMES W. NILSSON & SUSAN A. RIEDEL.
Chapter 13 The Basic Elements and Phasors. Objectives Be able to add and subtract sinusoidal voltages or currents Use phasor format to add and subtract.
EE301 Phasors, Complex Numbers, And Impedance. Learning Objectives Define a phasor and use phasors to represent sinusoidal voltages and currents Determine.
Lecture 07 AC POWER & POWER FACTOR.
AC POWER & POWER FACTOR.
Sinusoidal Excitation of Circuits
Lesson 1: Phasors and Complex Arithmetic
Chapter 6 Sinusoids and Phasors
ECE 1270: Introduction to Electric Circuits
Chapter 15.
The instantaneous power
Presentation transcript:

The Basic Elements and Phasors

OBJECTIVES Become familiar with the response of a resistor, an inductor, and a capacitor to the application of a sinusoidal voltage or current. Learn how to apply the phasor format to add and subtract sinusoidal waveforms. Understand how to calculate the real power to resistive elements and the reactive power to inductive and capacitive elements. Become aware of the differences between the frequency response of ideal and practical elements. Become proficient in the use of a calculator to work with complex numbers.

DERIVATIVE To understand the response of the basic R, L, and C elements to a sinusoidal signal, you need to examine the concept of the derivative in some detail. Recall from Section 10.10 that the derivative dx/dt is defined as the rate of change of x with respect to time. If x fails to change at a particular instant, dx = 0, and the derivative is zero.

DERIVATIVE FIG. 14.1 Defining those points in a sinusoidal waveform that have maximum and minimum derivatives.

DERIVATIVE FIG. 14.2 Derivative of the sine wave of Fig. 14.1.

DERIVATIVE FIG. 14.3 Effect of frequency on the peak value of the derivative.

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT Resistor Inductor Capacitor FIG. 14.4 Determining the sinusoidal response for a resistive element.

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT FIG. 14.5 The voltage and current of a resistive element are in phase.

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT FIG. 14.6 Defining the opposition of an element to the flow of charge through the element. FIG. 14.7 Defining the parameters that determine the opposition of an inductive element to the flow of charge.

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT FIG. 14.8 Investigating the sinusoidal response of an inductive element. FIG. 14.9 For a pure inductor, the voltage across the coil leads the current through the coil by 90°.

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT FIG. 14.10 Defining the parameters that determine the opposition of a capacitive element to the flow of charge.

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT FIG. 14.12 The current of a purely capacitive element leads the voltage across the element by 90°. FIG. 14.11 Investigating the sinusoidal response of a capacitive element.

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT FIG. 14.13 Example 14.1(a). FIG. 14.14 Example 14.1(b).

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT FIG. 14.16 Example 14.3(b). FIG. 14.15 Example 14.3(a).

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT FIG. 14.17 Example 14.5. FIG. 14.18 Example 14.7.

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response Resistor R Inductor L Capacitor C

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response FIG. 14.20 XL versus frequency. FIG. 14.19 R versus f for the range of interest.

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response FIG. 14.21 Effect of low and high frequencies on the circuit model of an inductor.

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response FIG. 14.22 XC versus frequency.

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response FIG. 14.23 Effect of low and high frequencies on the circuit model of a capacitor.

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Practical Response Resistor R Inductor L Capacitor C ESR

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Practical Response FIG. 14.24 Typical resistance-versus-frequency curves for carbon composition resistors.

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Practical Response FIG. 14.25 Practical equivalent for an inductor. FIG. 14.26 ZL versus frequency for the practical inductor equivalent of Fig. 14.25.

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Practical Response FIG. 14.27 Practical equivalent for a capacitor; (a) network; (b) response.

FREQUENCY RESPONSE OF THE BASIC ELEMENTS Practical Response FIG. 14.28 ESR. (a) Impact on equivalent model; (b) Measuring instrument.

AVERAGE POWER AND POWER FACTOR FIG. 14.29 Demonstrating that power is delivered at every instant of a sinusoidal voltage waveform (except vR = 0V).

AVERAGE POWER AND POWER FACTOR FIG. 14.30 Power versus time for a purely resistive load.

AVERAGE POWER AND POWER FACTOR FIG. 14.31 Determining the power delivered in a sinusoidal ac network.

AVERAGE POWER AND POWER FACTOR FIG. 14.32 Defining the average power for a sinusoidal ac network.

AVERAGE POWER AND POWER FACTOR Resistor Inductor Capacitor Power Factor

AVERAGE POWER AND POWER FACTOR FIG. 14.34 Purely inductive load with Fp = 0. FIG. 14.33 Purely resistive load with Fp = 1.

AVERAGE POWER AND POWER FACTOR FIG. 14.35 Example 14.12(a). FIG. 14.36 Example 14.12(b).

AVERAGE POWER AND POWER FACTOR FIG. 14.37 Example 14.12(c).

COMPLEX NUMBERS A complex number represents a point in a two-dimensional plane located with reference to two distinct axes. This point can also determine a radius vector drawn from the origin to the point. The horizontal axis is called the real axis, while the vertical axis is called the imaginary axis.

COMPLEX NUMBERS FIG. 14.38 Defining the real and imaginary axes of a complex plane.

RECTANGULAR FORM The format for the rectangular form is:

RECTANGULAR FORM FIG. 14.39 Defining the rectangular form. FIG. 14.40 Example 14.13(a).

RECTANGULAR FORM FIG. 14.41 Example 14.13(b). FIG. 14.42 Example 14.13(c). FIG. 14.41 Example 14.13(b).

POLAR FORM The format for the polar form is:

POLAR FORM FIG. 14.43 Defining the polar form. FIG. 14.44 Demonstrating the effect of a negative sign on the polar form. FIG. 14.43 Defining the polar form.

POLAR FORM FIG. 14.46 Example 14.14(b). FIG. 14.45 Example 14.14(a).

POLAR FORM FIG. 14.47 Example 14.14(c).

CONVERSION BETWEEN FORMS Rectangular to Polar Polar to Rectangular FIG. 14.48 Conversion between forms.

CONVERSION BETWEEN FORMS FIG. 14.49 Example 14.15. FIG. 14.50 Example 14.16.

CONVERSION BETWEEN FORMS FIG. 14.52 Example 14.18. FIG. 14.51 Example 14.17.

MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS Complex Conjugate Reciprocal Addition Subtraction Multiplication Division

MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS FIG. 14.53 Defining the complex conjugate of a complex number in rectangular form. FIG. 14.54 Defining the complex conjugate of a complex number in polar form.

MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS FIG. 14.56 Example 14.19(b). FIG. 14.55 Example 14.19(a).

MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS FIG. 14.58 Example 14.20(b). FIG. 14.57 Example 14.20(a).

MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS FIG. 14.59 Example 14.21(a). FIG. 14.60 Example 14.21(b).

CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators FIG. 14.61 TI-89 scientific calculator.

CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators FIG. 14.62 Setting the DEGREE mode on the TI-89 calculator.

CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators Rectangular to Polar Conversion FIG. 14.63 Converting 3 + j 5 to the polar form using the TI-89 calculator.

CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators Polar to Rectangular Conversion FIG. 14.64 Converting 5<3.1° to the rectangular form using the TI 89 calculator.

CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators Mathematical Operations FIG. 14.65 Performing the operation (10< 50°)(2< 20°).

CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators FIG. 14.66 Performing the operation (5<3.1°)(2 + j 2). FIG. 14.67 Verifying the results of Example 14.26(c).

PHASORS FIG. 14.68 Adding two sinusoidal waveforms on a point-by-point basis.

PHASORS FIG. 14.69 (a) The phasor representation of the sinusoidal waveforms of part (b); (b) finding the sum of two sinusoidal waveforms of v1 and v2.

PHASORS FIG. 14.70 Adding two sinusoidal currents with phase angles other than 90°.

PHASORS FIG. 14.72 Example 14.29.

PHASORS FIG. 14.73 Solution to Example 14.29.

PHASORS FIG. 14.74 Example 14.30.

PHASORS FIG. 14.75 Solution to Example 14.30.

COMPUTER ANALYSIS PSpice FIG. 14.76 Using PSpice to analyze the response of a capacitor to a sinusoidal ac signal.

COMPUTER ANALYSIS PSpice FIG. 14.77 A plot of the voltage, current, and power for the capacitor in Fig. 14.76.

COMPUTER ANALYSIS Multisim FIG. 14.78 Using Multisim to review the response of an inductive element to a sinusoidal ac signal.