Chap 5 Process Scheduling. Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU–I/O Burst Cycle – Process execution consists of a.

Slides:



Advertisements
Similar presentations
CPU Scheduling.
Advertisements

Chapter 5: CPU Scheduling
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2 nd Edition Chapter 6a: CPU Scheduling.
 Basic Concepts  Scheduling Criteria  Scheduling Algorithms.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Operating Systems Chapter 6
Chapter 5 CPU Scheduling. CPU Scheduling Topics: Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
Operating Systems CPU Scheduling. Agenda for Today What is Scheduler and its types Short-term scheduler Dispatcher Reasons for invoking scheduler Optimization.
CPU Scheduling CS 3100 CPU Scheduling1. Objectives To introduce CPU scheduling, which is the basis for multiprogrammed operating systems To describe various.
CPU Scheduling Algorithms
Chapter 3: CPU Scheduling
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling.
CS 311 – Lecture 23 Outline Kernel – Process subsystem Process scheduling Scheduling algorithms User mode and kernel mode Lecture 231CS Operating.
02/06/2008CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
Scheduling in Batch Systems
Chapter 6: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Chapter 6: CPU Scheduling Basic.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
What we will cover…  CPU Scheduling  Basic Concepts  Scheduling Criteria  Scheduling Algorithms  Evaluations 1-1 Lecture 4.
Chapter 5-CPU Scheduling
Chapter 5: Process Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Objectives To introduce CPU scheduling To describe.
02/11/2004CSCI 315 Operating Systems Design1 CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Basic Concepts Maximum CPU utilization.
Chapter 6: CPU Scheduling
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Silberschatz, Galvin, and Gagne  Applied Operating System Concepts Module 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
CS212: OPERATING SYSTEM Lecture 3: Process Scheduling 1.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Scheduling. Alternating Sequence of CPU And I/O Bursts.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
Alternating Sequence of CPU And I/O Bursts. Histogram of CPU-burst Times.
CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 5: CPU Scheduling.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
Chapter 5: Process Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Basic Concepts Maximum CPU utilization can be obtained.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
1 11/29/2015 Chapter 6: CPU Scheduling l Basic Concepts l Scheduling Criteria l Scheduling Algorithms l Multiple-Processor Scheduling l Real-Time Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 2, 2005 Chapter 5: CPU Scheduling Basic.
5.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 5: Process Scheduling Objectives To introduce CPU scheduling To describe various.
Silberschatz and Galvin  Operating System Concepts Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 5 CPU Scheduling Slide 1 Chapter 5 CPU Scheduling.
6.1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation.
1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling.
1 Uniprocessor Scheduling Chapter 3. 2 Alternating Sequence of CPU And I/O Bursts.
Chapter 4 CPU Scheduling. 2 Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation.
Lecture 4 CPU scheduling. Basic Concepts Single Process  one process at a time Maximum CPU utilization obtained with multiprogramming CPU idle :waiting.
CPU Scheduling G.Anuradha Reference : Galvin. CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time.
CPU scheduling.  Single Process  one process at a time  Maximum CPU utilization obtained with multiprogramming  CPU idle :waiting time is wasted 2.
1 Module 5: Scheduling CPU Scheduling Scheduling Algorithms Reading: Chapter
Basic Concepts Maximum CPU utilization obtained with multiprogramming
1 Lecture 5: CPU Scheduling Operating System Fall 2006.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 5: CPU Scheduling.
Chapter 5: CPU Scheduling. 5.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria.
1 Chapter 5: CPU Scheduling. 2 Basic Concepts Scheduling Criteria Scheduling Algorithms.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms.
Chapter 6: CPU Scheduling
CPU Scheduling G.Anuradha
Module 5: CPU Scheduling
3: CPU Scheduling Basic Concepts Scheduling Criteria
Chapter5: CPU Scheduling
Chapter 5: CPU Scheduling
Chapter 6: CPU Scheduling
Chapter 5: CPU Scheduling
Operating System , Fall 2000 EA101 W 9:00-10:00 F 9:00-11:00
Chapter 6: CPU Scheduling
Module 5: CPU Scheduling
Chapter 6: CPU Scheduling
CPU Scheduling: Basic Concepts
Module 5: CPU Scheduling
Presentation transcript:

Chap 5 Process Scheduling

Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait CPU burst distribution

CPU-I/O Burst Cycle Process execution begins with a CPU burst. Then an I/O burst is followed. And then CPU burst, I/O burst ….

Histogram of CPU-burst Times

CPU Scheduler Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them CPU scheduling may take place when a process: 1.Switches from running to waiting state 2.Switches from running to ready state 3.Switches from waiting to ready 4.Terminates Scheduling under 1 and 4 is nonpreemptive, under 2 and 3 is preemptive Nonpreemptive: the process keeps the CPU until it releases the CPU either by terminating or by switching to the waiting state.

Dispatcher Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves: –switching context –switching to user mode –jumping to the proper location in the user program to restart that program Dispatch latency – time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria CPU utilization – keep the CPU as busy as possible Throughput – # of processes that complete their execution per time unit Turnaround time – amount of time to execute a particular process Waiting time – amount of time a process has been waiting in the ready queue Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

First-Come, First-Served (FCFS) Scheduling ProcessBurst Time P 1 24 P 2 3 P 3 3 Suppose that the processes arrive in the order: P 1, P 2, P 3 The Gantt Chart for the schedule is: Waiting time for P 1 = 0; P 2 = 24; P 3 = 27 Average waiting time: ( )/3 = 17 P1P1 P2P2 P3P

FCFS Scheduling (Cont.) Suppose that the processes arrive in the order P 2, P 3, P 1 The Gantt chart for the schedule is: Waiting time for P 1 = 6; P 2 = 0 ; P 3 = 3 Average waiting time: ( )/3 = 3 Much better than previous case Convoy effect short process behind long process P1P1 P3P3 P2P

Shortest-Job-First (SJR) Scheduling Use these lengths to schedule the process with the shortest time Two schemes: –nonpreemptive – once CPU given to the process it cannot be preempted until completes its CPU burst –preemptive (Shortest-Remaining -Time-First (SRTF))– if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. SJF is optimal – gives minimum average waiting time for a given set of processes The difficult of SJF is knowing the length of the next CPU request.

ProcessArrival TimeBurst Time P P P P SJF (non-preemptive) Average waiting time = ( )/4 = 4 Example of Non-Preemptive SJF P1P1 P3P3 P2P P4P4 812

Example of Preemptive SJF ProcessArrival TimeBurst Time P P P P SJF (preemptive) Average waiting time = ( )/4 = 3 P1P1 P3P3 P2P P4P4 57 P2P2 P1P1 16

Priority Scheduling A priority number is associated with each process The CPU is allocated to the process with the highest priority (smallest integer  highest priority) –Preemptive or nonpreemptive SJF is a priority scheduling where priority is the predicted next CPU burst time Problem  Starvation – low priority processes may never execute Solution  Aging – as time progresses increase the priority of the process

Round Robin (RR) Each process gets a small unit of CPU time (time quantum), usually milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue. If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units. Performance –q large  FIFO –q small  q must be large with respect to context switch, otherwise overhead is too high

Example of RR Time Quantum = 20 ProcessBurst Time P 1 53 P 2 17 P 3 68 P 4 24 The Gantt chart is: Typically, higher average turnaround than SJF, but better response P1P1 P2P2 P3P3 P4P4 P1P1 P3P3 P4P4 P1P1 P3P3 P3P

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue Ready queue is partitioned into separate queues: foreground (interactive) and background (batch) Each queue has its own scheduling algorithm –foreground – RR –background – FCFS Scheduling must be done between the queues –Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation. –Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR –20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue A process can move between the various queues; aging can be implemented this way If a process can’t finish within a time quantum, it will be moved to a lower-priority queue. Multilevel-feedback-queue scheduler defined by the following parameters: –number of queues –scheduling algorithms for each queue –method used to determine when to upgrade a process –method used to determine when to demote a process –method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue Three queues: –Q 0 – RR with time quantum 8 milliseconds –Q 1 – RR time quantum 16 milliseconds –Q 2 – FCFS Scheduling –A new job enters queue Q 0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q 1. –At Q 1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q 2.

Multilevel Feedback Queues

Multiple-Processor Scheduling CPU scheduling more complex when multiple CPUs are available Homogeneous processors within a multiprocessor Asymmetric multiprocessing – all scheduling decisions, I/O processing and other system activities handled by a single processor. Symmetric multiprocessing – each processor is self-scheduling.

Multiple-Processor Scheduling Processor Affinity : due to high cost of invalidating and repopulating caches, most SMP systems try to avoid migration of processes from one processor to another. Load balancing : keep the workload evenly distributed across all processors in an SMP system. –Push migration and pull migration Load balancing often counteracts the benefits of processor affinity.

Windows XP Windows XP schedules threads using a priority-based, preemptive scheduling algorithm. Priorities

Algorithm Evaluation Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload Queueing models Implementation

Comparison of scheduling algorithm