P3 Physics Revision checklist Optics, Lenses and the Eye (1)

Slides:



Advertisements
Similar presentations
P3 Revision. How do forces have a turning effect? The turning effect of a force is called the moment. Distance from force to pivot – perpendicular to.
Advertisements

 Expect a question on Centre of Mass as AQA usually put one on.  The Eye was new in 2012, and eye structure was on 2013 paper. This year long/short.
Created by Stephanie Ingle Kingwood High School
Convex and Concave Lenses
Law of Reflection (Smooth Surface):
Suppose that you hold the transparency in the photograph below in front of a mirror. How will its reflection appear? Is the image: (1) inverted top-to-bottom?
1 UCT PHY1025F: Geometric Optics Physics 1025F Geometric Optics Dr. Steve Peterson OPTICS.
DEMONSTRATE UNDERSTANDING OF WAVES AS 2.3 LIGHT 4 WEEKS WAVES 4 WEEKS.
Light, Reflection, and Refraction Chapters 14 and 15 OPTICS.
and Optical Instruments
air water As light reaches the boundary between two media,
Reference Book is Geometric Optics.
8. Thin lenses Thin lenses are those whose thickness is small compared to their radius of curvature. They may be either converging or diverging. Example:
Curved Mirrors. Two types of curved mirrors 1. Concave mirrors – inwardly curved inner surface that converges incoming light rays. 2. Convex Mirrors –
Your final homework (#12) is due Friday 25th April. This homework can be collected from my office area in SER 220 from Monday 28 th onwards (for exam revision).
Geometric Optics Conceptual MC Questions. If the image distance is positive, the image formed is a (A) real image. (B) virtual image.
Noadswood Science,  To understand how step-up and step-down transformers work Monday, August 10, 2015.
Refraction and Lens. Refraction Refraction: the change in direction of a wave as it crosses the boundary b/w 2 media in which a wave travels different.
KEYWORDS: refraction, angle of incidence, Angle of refraction, refractive index KEYWORDS: refraction, angle of incidence, Angle of refraction, refractive.
Mirrors and Lenses Chapter 23
Refraction. Optical Density  Inverse measure of speed of light through transparent medium  Light travels slower in more dense media  Partial reflection.
Refraction & Lenses Chapter 18. Refraction of Light n Look at the surface of a swimming pool n Objects look distorted n Light bends as it goes from one.
Refraction is the change of direction of a light wave caused by a change in speed as the wave crosses a boundary between materials.
Optics 2: REFRACTION & LENSES. REFRACTION Refraction: is the bending of waves because of the change of speed of a wave when it passes from one medium.
KeyWords: radiation, diagnosis, ultrasound, CAT scanners, endoscopes, non-ionising radiation P3 topic 1 (part i) Radiation in treatment and medicine This.
KEY WORDS: Ionising Interfaces Refracton Total Internal Reflection ASSESSMENT: Describe the properties and uses of Xrays P3 REVISION – CHAPTER 1 – Medical.
P3 Pendulum and Hydraulics. Lesson Objective Key: Calculate the pendulum speed Stretch: Identify the key words in an exam question and then answer it.
8. Thin lenses Thin lenses are those whose thickness is small compared to their radius of curvature. They may be either converging or diverging. 1) Types.
Light refraction.
Refraction and Lenses Honors Physics.
Ch 23 1 Chapter 23 Light: Geometric Optics © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle.
Curved Mirrors Chapter 14, Section 3 Pg
LENSES Lyzinski Physics. Light Speeds When traveling through a vacuum, light travels at 3 x 10 8 m/s. This is the fastest light ever travels. We shall.
Light, Reflection, and Refraction Chapters 14 and 15.
Refraction When light passes from one medium to another, it bends.
Its now time to see the light…..  A lens is a curved transparent material that is smooth and regularly shaped so that when light strikes it, the light.
Ray Diagrams Noadswood Science, 2013.
Reflection & Mirrors. Reflection The turning back of an electromagnetic wave (light ray) at the surface of a substance. The turning back of an electromagnetic.
Chapter 19. Reflection The smooth surface of the lake reflects light rays so that the observer sees an inverted image of the landscape.
Light refraction Chapter 29 in textbook.
Mirrors.
Chapter 13 Properties of Light: Reflection and Mirrors Herriman High Honors Physics.
P3 Revision. How do forces have a turning effect? The turning effect of a force is called the moment. Distance from force to pivot – perpendicular to.
Mirrors. Types of mirror There are two types of mirror Plane (flat) Curved Concave (curves in) Convex (curves out)
PHYSICS – Total Internal Reflection and Lenses. LEARNING OBJECTIVES Core Describe the formation of an optical image by a plane mirror, and give its characteristics.
Chapter 22 Reflection and Refraction of Light Herriman High AP Physics 2.
Refraction, Lenses, & Color Created by Stephanie Ingle Kingwood High School Revised 5/09 by Susan Butler.
REFRACTION OF LIGHT & OPTICAL INSTRUMENTS Chapter 14.
P3 Exam questions. The following questions are examples of questions taken fro previous exams. If you can answer these and can learn these answers and.
Ultrasound and X rays- Imaging & Treating Ultrasound – longitudinal sound wave frequency above 20,000Hz. NON IONISING X ray – high frequency em wave with.
P3 Calculations. The speed of sound in the steel is 6000m/s. What is the distance to the flaw? s = v x t s = 6000 x (5 x )/2 s = 0.075m Remember.
P3 Physics Medical applications Section a) The structure of the eye. The structure of the eye is limited to: ■ retina ■ lens ■ cornea ■ pupil /iris.
P3 Revision. Medical Why are X-rays dangerous? They are ionising.
Refraction. Refraction of Light When light waves pass from one medium to the next, its speed changes, causing it to bend. Going from lower to higher index.
Lenses: Describe how a convergent lens works: Describe how a divergent lens works: Describe how the lens works in the eye: P3 REVISION – CHAPTER 1 – MEDICAL.
Light. Light is a electromagnetic radiation - a form of energy. Light travels in a straight line. The direction in which light is travelling is known.
Learning Intentions: Basically everything in the unit of Physics 3
Refraction and Lenses.
Optics: Reflection, Refraction Mirrors and Lenses
Which key facts do I need to know?
Magnetism and electromagnetism
PHYSICS – Total Internal Reflection and Lenses
P3 REVISION – CHAPTER 1 – MEDICAL APPLICATIONS OF PHYSICS
Waves A wave is a vibration (or oscillation) in space that transfers energy. Two types: transverse and longitudinal. Transverse: the wave vibrates at 90˚
X rays are electromagnetic waves of short wavelength, high frequency and high energy. They are ionising time period (s) = number of divisions x time base.
Presentation transcript:

P3 Physics Revision checklist Optics, Lenses and the Eye (1) P3 Optics, Lenses and the Eye (1) Refraction is the change of direction of light as it passes from one medium to another. A lens forms an image by refracting light.    In a convex or converging lens, parallel rays of light are brought to a focus at the principal focus. The distance from the lens to the principal focus is called the focal length. refractive index = sin i / sin r The nature of an image is defined by its size relative to the object, whether it is upright or inverted relative to the object and whether it is real or virtual. The nature of the image produced by a converging lens for an object placed at different distances from the lens. The use of a converging lens as a magnifying glass. The nature of the image produced by a concave or diverging lens. The construction of ray diagrams to show the formation of images by converging and diverging lenses. The magnification produced by a lens is calculated using the equation: magnification = image height / object height

P3 Physics Revision checklist Optics, Lenses and the Eye (2) P3 Optics, Lenses and the Eye (2) The structure of the eye is limited to: ■ retina ■ lens ■ cornea ■ pupil /iris ■ ciliary muscle ■ suspensory ligaments.    Correction of vision using convex and concave lenses to produce an image on the retina: ■ long sight, caused by the eyeball being too short, or the eye lens being unable to focus ■ short sight, caused by the eyeball being too long, or the eye lens being unable to focus. Range of vision. The eye can focus on objects between the near point and the far point. Comparison between the structure of the eye and the camera. Visible light can be sent along optical fibres. The laser as an energy source for cutting, cauterising and burning. The power of a lens is given by: P = 1 / f The focal length of a lens is determined by: ■ the refractive index of the material from which the lens is made, and ■ the curvature of the two surfaces of the lens. For a given focal length, the greater the refractive index, the flatter the lens. This means that the lens can be manufactured thinner. (HT Only) Total internal reflection and critical angle. refractive index = 1 / sin c

P3 Physics Revision checklist Stars and Planetary motion P3 Stars and Planetary Motion When an object moves in a circle it continuously accelerates towards the centre of the circle. This acceleration changes the direction of motion of the body, not its speed.    The resultant force causing this acceleration is called the centripetal force and is always directed towards the centre of the circle. The centripetal force needed to make an object perform circular motion increases as: ■ the mass of the object increases ■ the speed of the object increases ■ the radius of the circle decreases.

P3 Physics Revision checklist Turning Effects and Hydraulics (1) P3 Turning Effects and Hydraulics (1) The centre of mass of an object is that point at which the mass of the object may be thought to be concentrated.    If freely suspended, an object will come to rest with its centre of mass directly below the point of suspension. The centre of mass of a symmetrical object is along the axis of symmetry. For a simple pendulum: T = 1 / f The time period depends on the length of a pendulum. The turning effect of a force is called the moment. The size of the moment is given by the equation: M = F x d If an object is not turning, the total clockwise moment must be exactly balanced by the total anticlockwise moment about any pivot.

P3 Physics Revision checklist Turning Effects and Hydraulics (2) P3 Turning Effects and Hydraulics (2) The calculation of the size of a force, or its distance from pivot, acting on an object that is balanced. (HT Only)    Ideas of simple levers. If the line of action of the weight of an object lies outside the base of the object there will be a resultant moment and the body will tend to topple. (HT Only) Liquids are virtually incompressible, and the pressure in a liquid is transmitted equally in all directions. The use of different cross-sectional areas on the effort and load side of a hydraulic system enables the system to be used as a force multiplier. The pressure in different parts of a hydraulic system is given by: P = F / A

P3 Physics Revision checklist Ultrasounds and X-Rays P3 Ultrasounds and X-Rays X-rays are part of the electromagnetic spectrum. They have a very short wavelength and cause ionisation.    X-rays can be used to diagnose and treat some medical conditions. Precautions to be taken when X-ray machines and CT scanners are in use. Electronic systems can be used to produce ultrasound waves, which have a frequency higher than the upper limit of hearing for humans. Ultrasound waves are partially reflected when they meet a boundary between two different media. The time taken for the reflections to reach a detector can be used to determine how far away such a boundary is. Calculation of the distance between interfaces in various media. s = v x t Ultrasound waves can be used in medicine.

P3 Physics Revision checklist Motors, Generators and Transformers (1) P3 Motors, Generators and Transformers (1) When a current flows through a wire a magnetic field is produced around the wire. The motor effect and its use.    The size of the force can be increased by: ■ increasing the strength of the magnetic field ■ increasing the size of the current. The conductor will not experience a force if it is parallel to the magnetic field. The direction of the force is reversed if either the direction of the current or the direction of the magnetic field is reversed. If an electrical conductor ‘cuts’ through a magnetic field a potential difference is induced across the ends of the conductor. If a magnet is moved into a coil of wire a potential difference is induced across the ends of the coil. The basic structure of the transformer. An alternating current in the primary coil produces a changing magnetic field in the iron core and hence in the secondary coil. This induces an alternating potential difference across the ends of the secondary coil. In a step-up transformer the potential difference across the secondary coil is greater than the potential difference across the primary coil.

P3 Physics Revision checklist Motors, Generators and Transformers (2) P3 Motors, Generators and Transformers (2) In a step-down transformer the potential difference across the secondary coil is less than the potential difference across the primary coil.    The potential difference across the primary and secondary coils of a transformer are related by the equation: Vp / Vs = np / ns If transformers are assumed to be 100% efficient, the electrical power output would equal the electrical power input. Vp x Ip = Vs x Is Switch mode transformers operate at a high frequency, often between 50 kHz and 200 kHz. Switch mode transformers are much lighter and smaller than traditional transformers working from a 50 Hz mains supply. Switch mode transformers use very little power when they are switched on but no load is applied.