Quiz Use the properties of similar figures to answer 1 and 2:

Slides:



Advertisements
Similar presentations
7-6 Similar Figures Warm Up Problem of the Day Lesson Presentation
Advertisements

7-7 Scale Drawings Warm Up Problem of the Day Lesson Presentation
Scale Drawings and Scale Models
Scale Drawings and Scale Models
Ch. 7 Learning Goal: Ratios & Proportions Learn to find equivalent ratios to create proportions (7-1) Learn to work with rates and ratios (7-2) Learn to.
Scale Drawings and Scale Models
HW # 61 - Begin the Group Exam (Put this on a new TOC) Warm up Place your EXTRA CREDIT and your warm up page in the center of your table. Place your OLD.
RATIOS OF SCALE DRAWINGS. SCALE DRAWINGS SCALE DRAWINGS: A scale drawing is a drawing that represents a real object. The scale of the drawing is the ratio.
Problem of the Day 1) Find the Length of the missing side.
Similar Shapes and Scale Drawings
Holt CA Course 1 5-8Scale Drawings and Scale Models Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Preview Warm Up California Standards Lesson Presentation.
Pre-Algebra 7-7 Scale Drawings HW: Page 370 #1-6 and #21-26.
Pre-Algebra 7-7 Scale Drawings Learn to make comparisons between and find dimensions of scale drawings and actual objects.
Warm Up The scale of a drawing is 4 in. = 12 ft. Find each actual measurement in in. The scale of a map is 1 in. = 3.5 mi. Find each length.
5-5 Similar Figures Warm Up Problem of the Day Lesson Presentation
Solve each proportion. b = y5y5 = p9p9 = m = 4. b = 10y = 8 p = 3 m = 52 Warm Up.
Find the slope of the line through each pair of points.
Similar Figures 4-3 Problem of the Day A rectangle that is 10 in. wide and 8 in. long is the same shape as one that is 8 in. wide and x in. long. What.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
All scale drawings must have a scale written on them. Scales are usually expressed as ratios. Normally for maps and buildings the ratio: Drawing length:
Shape and Space Dilations The aim of this unit is to teach pupils to:
Scale Drawings and Scale Models
Warm Up Worksheet .
7-4 Similar Figures Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Scale Drawing and Scale Models
Ch. 7 Learning Goal: Ratios & Proportions Learn to find equivalent ratios to create proportions (7-1) Learn to work with rates and ratios (7-2) Learn to.
Warm Up Find the slope of the line through each pair of points. 1. (1, 5) and (3, 9) 2. (–6, 4) and (6, –2) Solve each equation. 3. 4x + 5x + 6x = 45 4.
Warm Up Solve each proportion. x = x6x = 2. x6x = x 3.5 = 4. x = 45x = 20 x = 2 x = 4.
All scale drawings must have a scale written on them. Scales are usually expressed as ratios. Normally for maps and buildings the ratio: Drawing length:
Warm Up Solve each proportion AB = 16 QR = 10.5 x = 21.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Page 374 #7-12 & #30-34 (Spiral Review)
Course Similar Figures 7-4 Similar Figures Course 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day.
5-7 Scale Drawings and Scale Models MG1.2 Read drawings and models made to scale. California Standards.
Holt CA Course 1 5-8Scale Drawings and Scale Models Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Course Similar Figures Warm Up Solve each proportion. b = y5y5 = p9p9 = m = 4. b = 10y = 8 p = 3 m = 52.
Pre-Algebra 7-9 Scaling Three-Dimensional Figures Pre-Algebra Homework Page 378 #10-18 & #32-39 (SR) Answers.
Learn to understand ratios and proportions in scale drawings
4-6 Scale Drawings and Scale Models Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson.
Pre-Algebra 7-8 Scale Models 7-8 Scale Models Pre-Algebra Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
7.1 Ratios and Proportions. Ratios Ratio: A comparison of two quantities by division. 1) The ratio of a to b 2) a : b Ratios can be written in three ways…
Course Scale Drawings and Scale Models Warm Up Evaluate the following for x = x2. x Evaluate the following for x = x4. x
Similar Shapes and Scale Drawings
Holt Algebra Rates, Ratios, and Proportions Warm Up Solve each equation. Check your answer. 1. 6x = m = y =18.4 Multiply. 6.7.
Warm up!. Scale drawings are enlarged or reduced drawings that are similar to an actual object or place. – The ratio of a distance in the drawing to the.
4-6 Scale Drawings and Scale Models Lesson Scale Drawings and Scale Models Warm Up Write the two requirements needed for two figures to be SIMILAR:
Scale Drawings and Scale Models
Scale Drawings and Scale Models
Scale Drawing and Scale Models
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
7-8 Scale Models Warm Up Problem of the Day Lesson Presentation
7-8 Scale Models Warm Up Problem of the Day Lesson Presentation
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up Worksheet .
Scale Drawings and Scale Models
A scale drawing is a drawing in which all parts of the drawing are reduced or enlarged by the same scale factor. A scale is a ratio that compares the measurements.
Scale Drawings and Scale Models
Rates, Ratios, and Proportions
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Scale Drawings and Scale Models
7-7 Scale Drawings Warm Up Problem of the Day Lesson Presentation
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up.
Warm Up Write each fraction in the simplest form
7-7 Scale Drawings Warm Up Problem of the Day Lesson Presentation
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Presentation transcript:

Quiz Use the properties of similar figures to answer 1 and 2: 1. A rectangular house is 32 ft wide and 68 ft long. On a blueprint, the width is 8 in. Find the length on the blueprint. 2. Karen enlarged a 3 in. wide by 5 in. tall photo into a poster. If the poster is 2.25 ft wide, how tall is it? 3. Tell whether the transformation is a dilation. A(0, 4) B(5,5) C(3,3) A’(0, 8) B’(10, 10) C’(6, 6) 4. Dilate the figure by a scale factor of 2 with the origin as the center of dilation. What are the coordinates of the image? A(2,4) B(5,6) C(6,1)

Scale Drawings 7.7 Pre-Algebra

Warm Up Evaluate the following for x = 16. 1. 3x 2. x 4 48 12 2 5 1 4 1 10 4

Learn to make comparisons between and find dimensions of scale drawings and actual objects.

Vocabulary scale drawing scale reduction enlargement

Scale and Scale Drawings A scale drawing is a two-dimensional drawing that accurately represents an object. The scale drawing is mathematically similar to the object. A scale gives the ratio of the dimensions in the drawing to the dimensions of the object. All dimensions are reduced or enlarged using the same scale. Scales can use the same units or different units.

Scale - Interpretation 1:20 1 unit on the drawing is 20 units. 1 cm: 1 m 1 cm on the drawing is 1 m. in. = 1 ft in. on the drawing is 1 ft. 1 4 1 4 The scale a:b is read “a to b.” For example, the scale 1 cm:3 ft is read “one centimeter to three feet.” Reading Math

Example: Using Proportions to Find Unknown Scales or Lengths A. The length of an object on a scale drawing is 2 cm, and its actual length is 8 m. The scale is 1 cm: __ m. What is the scale? 1 cm x m 2 cm 8 m Set up proportion using scale length . actual length = 1  8 = x  2 Find the cross products. 8 = 2x 4 = x Solve the proportion. The scale is 1 cm:4 m.

Example: Using Proportions to Find Unknown Scales or Lengths B. The length of an object on a scale drawing is 1.5 inches. The scale is 1 in:6 ft. What is the actual length of the object? 1 in. 6 ft 1.5 in. x ft Set up proportion using scale length . actual length = 1  x = 6  1.5 Find the cross products. x = 9 Solve the proportion. The actual length is 9 ft.

Try This A. The length of an object on a scale drawing is 4 cm, and its actual length is 12 m. The scale is 1 cm: __ m. What is the scale? 1 cm x m 4 cm 12 m Set up proportion using scale length . actual length = 1  12 = x  4 Find the cross products. 12 = 4x 3 = x Solve the proportion. The scale is 1 cm:3 m.

Try This B. The length of an object on a scale drawing is 2 inches. The scale is 1 in:4 ft. What is the actual length of the object? 1 in. 4 ft 2 in. x ft Set up proportion using scale length . actual length = 1  x = 4  2 Find the cross products. x = 8 Solve the proportion. The actual length is 8 ft.

Reductions and Enlargements A scale drawing that is smaller than the actual object is called a reduction. A scale drawing can also be larger than the object. In this case, the drawing is referred to as an enlargement.

Example: Life Sciences Application Under a 1000:1 microscope view, an amoeba appears to have a length of 8 mm. What is its actual length? 1000 1 = 8 mm x mm scale length actual length 1000  x = 1  8 Find the cross products. x = 0.008 Solve the proportion. The actual length of the amoeba is 0.008 mm.

Try This Under a 10,000:1 microscope view, a fiber appears to have length of 1mm. What is its actual length? 10,000 1 = 1 mm x mm scale length actual length 10,000  x = 1  1 Find the cross products. x = 0.0001 Solve the proportion. The actual length of the fiber is 0.0001 mm.

What does it Mean? A drawing that uses the scale in. = 1 ft is said to be in in. scale. Similarly, a drawing that uses the scale in. = 1 ft is in in. scale. 1 4 1 2

Example: Using Scales and Scale Drawings to Find Heights A. If a wall in a in. scale drawing is 4 in. tall, how tall is the actual wall? 1 4 0.25 in. 1 ft = 4 in. x ft. scale length actual length Length ratios are equal. Find the cross products. 0.25  x = 1  4 Solve the proportion. x = 16 The wall is 16 ft tall.

Example: Using Scales and Scale Drawings to Find Heights 1 2 B. How tall is the wall if a in. scale is used? 0.5 in. 1 ft = 4 in. x ft. scale length actual length Length ratios are equal. Find the cross products. 0.5  x = 1  4 Solve the proportion. x = 8 The wall is 8 ft tall.

Try This A. If a wall in a in. scale drawing is 0.5 in. thick, how thick is the actual wall? 1 4 0.25 in. 1 ft = 0.5 in. x ft. scale length actual length Length ratios are equal. Find the cross products. 0.25  x = 1  0.5 Solve the proportion. x = 2 The wall is 2 ft thick.

Try This Continued 1 2 B. How thick is the wall if a in. scale is used? 0.5 in. 1 ft = x ft. scale length actual length Length ratios are equal. Find the cross products. 0.5  x = 1  0.5 Solve the proportion. x = 1 The wall is 1 ft thick.

Lesson Quiz 1. What is the scale of a drawing in which a 9 ft wall is 6 cm long? 2. Using a in. = 1 ft scale, how long would a drawing of a 22 ft car be? 3. The height of a person on a scale drawing is 4.5 in. The scale is 1:16. What is the actual height of the person? The scale of a map is 1 in. = 21 mi. Find each length on the map. 4. 147 mi 5. 5.25 mi 1 cm = 1.5 ft. 1 4 5.5 in. 72 in. 7 in. 0.25 in.