The 68-95-99.7 Rule Normal Distributions.

Slides:



Advertisements
Similar presentations
Chapter 2: Modeling Distributions of Data
Advertisements

CHAPTER 3: The Normal Distributions Lecture PowerPoint Slides The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner.
Chapter 2: The Normal Distribution
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
3.3 Density Curves and Normal Distributions
Normal Distributions and the Empirical Rule Learning Target: I can use percentiles and the Empirical rule to determine relative standing of data on the.
Stat 1510: Statistical Thinking and Concepts 1 Density Curves and Normal Distribution.
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
2.2A I NTRODUCTION TO N ORMAL D ISTRIBUTIONS. S ECTION 2.2A N ORMAL D ISTRIBUTIONS After this lesson, you should be able to… DESCRIBE and APPLY the
+ Warm Up The graph below shows cumulative proportions plotted against GPA for a large public high school. What is the median GPA? a) 0.8b) 2.0c) 2.4d)
CHAPTER 3: The Normal Distributions ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
2.2A I NTRODUCTION TO N ORMAL D ISTRIBUTIONS. S ECTION 2.2A N ORMAL D ISTRIBUTIONS After this lesson, you should be able to… DESCRIBE and APPLY the
Section 2.2 Normal Distributions Mrs. Daniel AP Statistics.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
CHAPTER 3: The Normal Distributions
Using the Empirical Rule. Normal Distributions These are special density curves. They have the same overall shape  Symmetric  Single-Peaked  Bell-Shaped.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
+ Chapter 2: Modeling Distributions of Data Lesson 2: Normal Distributions.
Modeling Distributions
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
2.2 Normal Distributions
Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Entry Task Chapter 2: Describing Location in a Distribution
CHAPTER 2 Modeling Distributions of Data
Statistics Objectives: The students will be able to … 1. Identify and define a Normal Curve by its mean and standard deviation. 2. Use the 68 – 95 – 99.7.
CHAPTER 3: The Normal Distributions
Chapter 2: Modeling Distributions of Data
Density Curves and Normal Distribution
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Warmup What is the height? What proportion of data is more than 5?
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 3 Modeling Distributions of Data
Chapter 3: Modeling Distributions of Data
CHAPTER 3: The Normal Distributions
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 3: The Normal Distributions
Mean and Median.
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Presentation transcript:

The 68-95-99.7 Rule Normal Distributions

Interpreting Variability The mean and standard deviation can be combined to obtain informative statements about how the values in a data set are distributed and about the relative position of a particular value in a data set. To do this, it is useful to be able to describe how far away a particular observation is from the mean in terms of the standard deviation.

Normal Distributions Normal Distributions One particularly important class of density curves are the Normal curves, which describe Normal distributions. All Normal curves are symmetric, single-peaked, and bell-shaped A Specific Normal curve is described by giving its mean µ and standard deviation σ. Normal Distributions Two Normal curves, showing the mean µ and standard deviation σ.

Normal Distributions Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc.

Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc.

Normal Distributions Definition: A Normal distribution is described by a Normal density curve. Any particular Normal distribution is completely specified by two numbers: its mean µ and standard deviation σ. The mean of a Normal distribution is the center of the symmetric Normal curve. The standard deviation is the distance from the center to the change-of-curvature points on either side. We abbreviate the Normal distribution with mean µ and standard deviation σ as N (µ,σ).

Normal distributions are good descriptions for some distributions of real data. Normal distributions are good approximations of the results of many kinds of chance outcomes. Many statistical inference procedures are based on Normal distributions.

Although there are many Normal curves, they all have properties in common. The 68-95-99.7 Rule Definition: The 68-95-99.7 Rule (“The Empirical Rule”) In the Normal distribution with mean µ and standard deviation σ: Approximately 68% of the observations are within 1 standard deviation of the mean. Approximately 95% of the observations are within 2 standard deviation of the mean. Approximately 99.7% of the observations are within 3 standard deviation of the mean.

Example 1 The distribution of heights of adult American men is approximately normally distributed with mean 69 inches and standard deviation 2.5 inches. Sketch the corresponding normal curve. a. What percent of men are taller than 74 inches? b. Between what heights do the middle 95% of men fall? c. What percent of men are between 64 and 66.5 inches tall?

Sketch the Normal density curve for this distribution. The distribution of Iowa Test of Basic Skills (ITBS) vocabulary scores for 7th grade students in Gary, Indiana, is close to Normal. Suppose the distribution is N (6.84, 1.55). Sketch the Normal density curve for this distribution. What percent of ITBS vocabulary scores are less than 3.74? What percent of the scores are between 5.29 and 9.94? Example, p. 113

The Standard Normal Distribution All Normal distributions are the same if we measure in units of size σ from the mean µ as center. Definition: The standard Normal distribution is the Normal distribution with mean 0 and standard deviation 1. If a variable x has any Normal distribution N(µ,σ) with mean µ and standard deviation σ, then the standardized variable has the standard Normal distribution, N (0,1).

The Standard Normal Table Because all Normal distributions are the same when we standardize, we can find areas under any Normal curve from a single table. Definition: The Standard Normal Table Table A is a table of areas under the standard Normal curve. The table entry for each value z is the area under the curve to the left of z.

Suppose we want to find the proportion of observations from the standard Normal distribution that are less than 0.81. We can use Table A: Z .00 .01 .02 0.7 .7580 .7611 .7642 0.8 .7881 .7910 .7939 0.9 .8159 .8186 .8212 P(z < 0.81) = .7910

What value of z corresponds to the smallest 2.5% of area in the curve? Normal Tables What is P(z < -2.0)? What value of z corresponds to the smallest 2.5% of area in the curve?

Above which z-value lies the largest 2.5% of area under the curve? Normal Tables What is P(z < 2.0)? Above which z-value lies the largest 2.5% of area under the curve?

Using the Normal Tables Find P(z < 0.46) Column labeled 0.06 Row labeled 0.4 P(z < 0.46) = 0.6772

P(z < -2.74) = Find P(z < -2.74) Column labeled 0.04 Row labeled -2.7

Find P (z < -2.18). Find P (z > 2.18).

Finding Areas Under the Standard Normal Curve Example, p. 117 Find the proportion of observations from the standard Normal distribution that are between -1.25 and 0.81. Can you find the same proportion using a different approach? 1 - (0.1056+0.2090) = 1 – 0.3146 = 0.6854

Symmetry Property Notice from the preceding examples it becomes obvious that P(z > z*) = P(z < -z*)