1. SIGGRAPH 2010 Single Scattering in Heterogeneous Participating media Cyril Delalandre Pascal Gautron Jean-Eudes MarvieGuillaume François Technicolor.

Slides:



Advertisements
Similar presentations
Realistic Simulation and Rendering of Smoke CSE Class Project Presentation Oleksiy Busaryev TexPoint fonts used in EMF. Read the TexPoint manual.
Advertisements

An Optimized Soft Shadow Volume Algorithm with Real-Time Performance Ulf Assarsson 1, Michael Dougherty 2, Michael Mounier 2, and Tomas Akenine-Möller.
Dynamic Sky Dome GDC March 2nd, 2011 by Igor Lobanchikov
Scalability with Many Lights 1 Lightcuts & Multidimensonal Lightcuts Course: Realistic Rendering with Many-Light Methods Note: please see website for the.
Soft Particles Petter Börjesson, Mattias Thell. Particle Effects Smoke, fire, explosions, clouds, etc Camera-aligned 2D quads – Gives the illusion of.
Direct Volume Rendering. What is volume rendering? Accumulate information along 1 dimension line through volume.
Chunhui Yao 1 Bin Wang 1 Bin Chan 2 Junhai Yong 1 Jean-Claude Paul 3,1 1 Tsinghua University, China 2 The University of Hong Kong, China 3 INRIA, France.
3D Graphics Rendering and Terrain Modeling
Light Fields PROPERTIES AND APPLICATIONS. Outline  What are light fields  Acquisition of light fields  from a 3D scene  from a real world scene 
Advanced Effects CMSC 435/634. General Approach Ray Tracing – Shoot more rays Rasterization – Render more images.
Szirmay-Kalos László Magdics Milán Tóth Balázs
The Discrete Ray-casting Algorithm Qiang Xue Jiaoying Shi State Key Lab Of CAD&CG Zhejiang University.
Tuesday February 19 th, 2002 Deep Shadow Maps Tom Lokovic & Eric Veach Pixar Animation Studios Presented by Tom Lechner.
5D COVARIA NCE TRACING FOR EFFICIENT DEFOCUS AND MOTION BLUR Laurent Belcour 1 Cyril Soler 2 Kartic Subr 3 Nicolas Holzschuch 2 Frédo Durand 4 1 Grenoble.
William Moss Advanced Image Synthesis, Fall 2008.
Real-Time Rendering Paper Presentation Imperfect Shadow Maps for Efficient Computation of Indirect Illumination T. Ritschel T. Grosch M. H. Kim H.-P. Seidel.
Rasterization and Ray Tracing in Real-Time Applications (Games) Andrew Graff.
Efficient Simulation of Light Transport in Scenes with Participating Media using Photon Maps Paper by Henrik Wann Jensen, Per H. Christensen Presented.
CSCE 641: Photon Mapping Jinxiang Chai. Outline Rendering equation Photon mapping.
Hokkaido University Efficient Rendering of Lightning Taking into Account Scattering Effects due to Clouds and Atmospheric Particles Tsuyoshi Yamamoto Tomoyuki.
Splatting Josh Anon Advanced Graphics 1/29/02. Types of Rendering Algorithms Backward mapping Image plane mapped into data Ray casting Forward mapping.
Efficient Image-Based Methods for Rendering Soft Shadows
Interactive Shadow Generation in Complex Environments Naga K. Govindaraju, Brandon Lloyd, Sung-Eui Yoon, Avneesh Sud, Dinesh Manocha Speaker: Alvin Date:
Perspective Shadow Maps Marc Stamminger and George Drettakis Speaker: Alvin Date: 5/28/2003 SIGGRAPH 2002.
Exploiting Temporal Coherence for Incremental All-Frequency Relighting Ryan OverbeckRavi Ramamoorthi Aner Ben-ArtziEitan Grinspun Columbia University Ng.
Acceleration on many-cores CPUs and GPUs Dinesh Manocha Lauri Savioja.
Direct Volume Rendering w/Shading via Three- Dimensional Textures.
Introduction | Crepuscular rays and Caustics Caustics are high intensity highlights due to convergence of light via different paths Crepuscular rays (godrays)
Real-Time Ray Tracing 3D Modeling of the Future Marissa Hollingsworth Spring 2009.
Presentation of LR2V Kadi Bouatouch IRISA
Outline Reprojection and data reuse Reprojection and data reuse – Taxonomy Bidirectional reprojection Bidirectional reprojection.
Research & Innovation 1 An Industry Perspective on VVG Research Oliver Grau BBC Research & Innovation VVG SUMMER SCHOOL '07.
Erdem Alpay Ala Nawaiseh. Why Shadows? Real world has shadows More control of the game’s feel  dramatic effects  spooky effects Without shadows the.
Ansh Bahri Sandeep Thippeswamy Sohil Himanish Anuja Chandorkar
Ray Tracing Primer Ref: SIGGRAPH HyperGraphHyperGraph.
Technology and Historical Overview. Introduction to 3d Computer Graphics  3D computer graphics is the science, study, and method of projecting a mathematical.
1/45 A Fast Rendering Method for Clouds Illuminated by Lightning Taking into Account Multiple Scattering Yoshinori Dobashi (Hokkaido University) Yoshihiro.
Interactive Hair Rendering Under Environment Lighting Valentin JANIAUT Zhong Ren, Kun Zhou, Tengfei Li, Wei Hua, Baining Guo.
KinectFusion : Real-Time Dense Surface Mapping and Tracking IEEE International Symposium on Mixed and Augmented Reality 2011 Science and Technology Proceedings.
02/25/05© 2005 University of Wisconsin Last Time Meshing Volume Scattering Radiometry (Adsorption and Emission)
Interactive Virtual Relighting and Remodelling of Real Scenes C. Loscos 1, MC. Frasson 1,2,G. Drettakis 1, B. Walter 1, X. Granier 1, P. Poulin 2 (1) iMAGIS*
Rendering hair with graphics hardware Tae-Yong Kim Rhythm & Hues Studios
Interactive Rendering of Meso-structure Surface Details using Semi-transparent 3D Textures Vision, Modeling, Visualization Erlangen, Germany November 16-18,
-Global Illumination Techniques
Project Raytracing. Content Goals Idea of Raytracing Ray Casting – Therory – Practice Raytracing – Theory – Light model – Practice Output images Conclusion.
1 Dr. Scott Schaefer Ray Tracing. 2/42 Ray Tracing Provides rendering method with  Refraction/Transparent surfaces  Reflective surfaces  Shadows.
Week 10 - Wednesday.  What did we talk about last time?  Shadow volumes and shadow mapping  Ambient occlusion.
Computer Graphics Global Illumination: Photon Mapping, Participating Media Lecture 12 Taku Komura.
1 Photon-driven Irradiance Cache J. BrouillatP. GautronK. Bouatouch INRIA RennesUniversity of Rennes1.
1 Real-time visualization of large detailed volumes on GPU Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre INRIA Rhône-Alpes / Grenoble Universities Interactive.
1 Implicit Visibility and Antiradiance for Interactive Global Illumination Carsten Dachsbacher 1, Marc Stamminger 2, George Drettakis 1, Frédo Durand 3.
Quick survey about PRT Valentin JANIAUT KAIST (Korea Advanced Institute of Science and Technology)
Efficient Image-Based Methods for Rendering Soft Shadows SIGGRAPH 2001 Maneesh Agrawala Ravi Ramamoorthi Alan Heirich Laurent Moll Pixar Animation Studios.
- Laboratoire d'InfoRmatique en Image et Systèmes d'information
University of Montreal & iMAGIS A Light Hierarchy for Fast Rendering of Scenes with Many Lights E. Paquette, P. Poulin, and G. Drettakis.
University of Texas at Austin CS395T - Advanced Image Synthesis Spring 2007 Don Fussell Participating Media & Vol. Scattering Applications Clouds, smoke,
Volume Visualization with Ray Casting
Real-Time Relief Mapping on Arbitrary Polygonal Surfaces Fabio Policarpo Manuel M. Oliveira Joao L. D. Comba.
Oliver Klehm, MPI Informatik Hans-Peter Seidel, MPI Informatik Elmar Eisemann, TU Delft.
CSE 681 Introduction to Ray Tracing. CSE 681 Ray Tracing Shoot a ray through each pixel; Find first object intersected by ray. Image plane Eye Compute.
Radiance Cache Splatting: A GPU-Friendly Global Illumination Algorithm P. Gautron J. Křivánek K. Bouatouch S. Pattanaik.
02/07/03© 2003 University of Wisconsin Last Time Finite element approach Two-pass approaches.
1 Per-Pixel Opacity Modulation for Feature Enhancement in Volume Rendering Speaker: 吳昱慧 Date:2010/11/16 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER.
Atmospheric Effects Interactive Rendering of Atmospheric Scattering Effects Using Graphics Hardware Tsuyoshi Yamamoto Tomoyuki Nishita Tokyo University.
Toward Real-Time Global Illumination. Global Illumination == Offline? Ray Tracing and Radiosity are inherently slow. Speedup possible by: –Brute-force:
Toward Real-Time Global Illumination. Project Ideas Distributed ray tracing Extension of the radiosity assignment Translucency (subsurface scattering)
Real-Time Soft Shadows with Adaptive Light Source Sampling
3D Graphics Rendering PPT By Ricardo Veguilla.
An Approximation of Volumetric Lighting
Real-time Volumetric Lighting in Participating Media
Presentation transcript:

1

SIGGRAPH 2010 Single Scattering in Heterogeneous Participating media Cyril Delalandre Pascal Gautron Jean-Eudes MarvieGuillaume François Technicolor Research & Innovation The Moving Picture Company 2

Real Light Scattering Light interaction with heterogeneous participating media 3

Participating Media Characterized by: –σ a : absorption coefficient –σ s : scattering coefficient –σ t : σ a + σ s, extinction coefficient –D(s) : medium density at the point s 4

Single Scattering in participating media 5

Explicit ray-marching KiKi P in P out K in K out P3P3 P2P2 P1P1 PnPn 6

Outline Introduction Previous works Our algorithm Results Conclusion 7

Outline Introduction Previous worksPrevious works Our algorithm Results Conclusion 8

Previous works [Zhou08] [Gautron09] [Jansen10] 9

Volumetric Shadow Mapping [Gautron09], Siggraph Talk Real-time rendering -Homogeneous medium 10

Real-time smoke rendering by using compensed ray marching, [Zhou08], Siggraph Real-Time rendering +Single and Multiple scattering +Heterogeneous medium -Heavy precomputation 11

Fourier Opacity Map, [Jansen10], I3D Real-time rendering +Heterogeneous medium -No scattering computation 12

Outline Introduction Previous works Our algorithmOur algorithm Results Conclusion 13

Goals Single scattering Volume shadows Dynamic Viewpoint and Lighting Generic and Dynamic Medium Scalable Without pre-computation 14

Acceleration of the light reduced intensity computation Small memory footprint Contributions 15 Attenuation Function Map

Algorithm Light Depth Map Attenuation function map View Depth & radiance Map Scattering Computation 16

Attenuation Function Map C 0 = 0 C 1 = 0. C n = 0 C 0 += att 1 x C 1 += att 1 x. C n += att 1 x C 0 += att 2 x C 1 += att 2 x. C n += att 2 x C 0 += att n x C 1 += att n x. C n += att n x Light Point of View 1.Opaque objects Depth Map 2.For each pixel: a.Bounding box Intersection b.Coefficient Computation by ray- marching 17

Attenuation Function Map Light Point of View 1.Opaque objects Depth Map 2.For each pixel: a.Bounding box Intersection b.Coefficient Computation by ray- marching c.Store in Multi Render Targets C 0-n (0,0) C 0-n (K,0)C 0-n (K,L) C 0-n (0,L) C 0-n (i,j) 18

Scene Rendering In User point of view: 1.Compute the depth and reflected radiance of opaque objects (R,G,B)(Alpha) 19

Compute Scattering C 0-n (0,0) C 0-n (K,0 ) C 0-n (K,L) C 0-n (0,L) C 0-n (i,j ) 2.Intersection of the medium bounding box 20 Depth Map Attenuation Function Map

Compute Scattering C 0-n (0,0) C 0-n (K,0 ) C 0-n (K,L) C 0-n (0,L) C 0-n (i,j ) 3.Perform a ray-marching 21 Depth Map Attenuation Function Map

Compute Scattering C 0-n (0,0) C 0-n (K,0 ) C 0-n (K,L) C 0-n (0,L) C 0-n (i,j ) For each ray sample: a.Check the sample visibility b.Check the light visibility c.Lri computation using the coefficients Lri = c 0 x+ c 1 x + … + c n x 22 Depth Map Attenuation Function Map

Results Comparison between our algorithm and an explicit ray-marching algorithm 100 samples per ray / 16 DCT coefficients 23 Speed-up 30x

Ringing artifacts High Density Medium 24

Add a scale factor to avoid ringing artifacts High Density Medium Transformed Signal Reconstructed Signal 25

High Density Medium Without scale factorWith scale factor 26 Explicit ray-marching

Demos – GTX 480 – 720p samples / view ray, 16 DCT coefficients, medium size, 10 FPS

Demos – GTX 480 – 720p samples / view ray, 16 DCT coefficients, medium size, 19 FPS

Conclusion 29 Single Scattering Volume Shadows Fast Lri computation Scalable Generic No pre-computation

Large medium Multiple Scattering Particle representation Image Lighting Future Works 30

Thanks to A. W. Bargteil and C. Thompson (University of Utah) for the fluid simulation Thanks to K. Bouatouch for his research supervision Acknowledgements 31 Questions ?