ATPase dataset -> nj in figtree. ATPase dataset -> muscle -> phyml (with ASRV)– re-rooted.

Slides:



Advertisements
Similar presentations
Phylip PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring phylogenies (evolutionary trees). PHYLIP is the most widely-distributed.
Advertisements

Ortholog vs. paralog? 1. Collect Sequence Data Good Dataset
Bioinformatics Phylogenetic analysis and sequence alignment The concept of evolutionary tree Types of phylogenetic trees Measurements of genetic distances.
1 General Phylogenetics Points that will be covered in this presentation Tree TerminologyTree Terminology General Points About Phylogenetic TreesGeneral.
Molecular Evolution Revised 29/12/06
© Wiley Publishing All Rights Reserved. Phylogeny.
Phylip PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring phylogenies (evolutionary trees). PHYLIP is the most widely-distributed.
MCB 371/372 phyml & treepuzzle 4/18/05 Peter Gogarten Office: BSP 404 phone: ,
Input and output. What’s in PHYLIP Programs in PHYLIP allow to do parsimony, distance matrix, and likelihood methods, including bootstrapping and consensus.
Phylip PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring phylogenies (evolutionary trees). PHYLIP is the most widely-distributed.
Sequence alignment: Removing ambiguous positions: Generation of pseudosamples: Calculating and evaluating phylogenies: Comparing phylogenies: Comparing.
Phylogenetic reconstruction Peter Gogarten Office: BSP 404 phone: ,
Sequence alignment: Removing ambiguous positions: Generation of pseudosamples: Calculating and evaluating phylogenies: Comparing phylogenies: Comparing.
Bioinformatics and Phylogenetic Analysis
Phylogenetic reconstruction - How
Steps of the phylogenetic analysis
Dispersal models Continuous populations Isolation-by-distance Discrete populations Stepping-stone Island model.
MCB 371/372 PHYLIP how to make sense out of a tree 4/11/05 Peter Gogarten Office: BSP 404 phone: ,
Branches, splits, bipartitions In a rooted tree: clades (for urooted trees sometimes the term clann is used) Mono-, Para-, polyphyletic groups, cladists.
Bas E. Dutilh Phylogenomics Using complete genomes to determine the phylogeny of species.
Example of bipartition analysis for five genomes of photosynthetic bacteria (188 gene families) total 10 bipartitions R: Rhodobacter capsulatus, H: Heliobacillus.
MCB 371/372 vi, perl, Sequence alignment, PHYLIP 4/6/05 Peter Gogarten Office: BSP 404 phone: ,
Gene transfer Organismal tree: species B species A species C species D Gene Transfer seq. from B seq. from A seq. from C seq. from D molecular tree: speciation.
Trees – what might they mean? Calculating a tree is comparatively easy, figuring out what it might mean is much more difficult. If this is the probable.
Cenancestor (aka LUCA or MRCA) can be placed using the echo remaining from the early expansion of the genetic code. reflects only a single cellular component.
MCB 371/372 Sequence alignment Sequence space 4/4/05 Peter Gogarten Office: BSP 404 phone: ,
Branches, splits, bipartitions In a rooted tree: clades Mono-, Para-, polyphyletic groups, cladists and a natural taxonomy Terminology The term cladogram.
What is it good for? Gene duplication events can provide an outgroup that allows rooting a molecular phylogeny. Most famously this principle was applied.
Probabilistic methods for phylogenetic trees (Part 2)
Chapter 2 Opener How do we classify organisms?. Figure 2.1 Tracing the path of evolution to Homo sapiens from the universal ancestor of all life.
Building Phylogenies Parsimony 1. Methods Distance-based Parsimony Maximum likelihood.
Phylogenetic Analysis. 2 Phylogenetic Analysis Overview Insight into evolutionary relationships Inferring or estimating these evolutionary relationships.
Trees? J. Peter Gogarten University of Connecticut Dept. of Molecular and Cell Biology Sculpture at Royal Botanical Gardens, Kew.
MCB 371/372 PHYLIP & Exercises 4/13/05 Peter Gogarten Office: BSP 404 phone: ,
MCB 372 #14: Student Presentations, Discussion, Clustering Genes Based on Phylogenetic Information J. Peter Gogarten University of Connecticut Dept. of.
Trees – what might they mean? Calculating a tree is comparatively easy, figuring out what it might mean is much more difficult. If this is the probable.
Bioinformatics tools for phylogeny and visualization
MCB5472 Computer methods in molecular evolution Lecture 3/31/2014.
Phylogenetic analyses Kirsi Kostamo. The aim: To construct a visual representation (a tree) to describe the assumed evolution occurring between and among.
Alexis Dereeper Homology analysis and molecular phylogeny CIBA courses – Brasil 2011.
Christian M Zmasek, PhD 15 June 2010.
Coalescence and the Cenancestor J. Peter Gogarten University of Connecticut Department of Molecular and Cell Biology.
ATPase dataset -> nj in figtree. ATPase dataset -> muscle -> phyml (with ASRV)– re-rooted.
Phylogenetic trees School B&I TCD Bioinformatics May 2010.
Lecture 25 - Phylogeny Based on Chapter 23 - Molecular Evolution Copyright © 2010 Pearson Education Inc.
Bioinformatics 2011 Molecular Evolution Revised 29/12/06.
Applied Bioinformatics Week 8 Jens Allmer. Practice I.
Molecular phylogenetics 4 Level 3 Molecular Evolution and Bioinformatics Jim Provan Page and Holmes: Sections
Trees – what might they mean? Calculating a tree is comparatively easy, figuring out what it might mean is much more difficult. If this is the probable.
Introduction to Phylogenetics
ATPase dataset from last Friday Alignment clustal vs muscle Conserved part are aligned reproducibly.
Chapter 10 Phylogenetic Basics. Similarities and divergence between biological sequences are often represented by phylogenetic trees Phylogenetics is.
Why do trees?. Phylogeny 101 OTUsoperational taxonomic units: species, populations, individuals Nodes internal (often ancestors) Nodes external (terminal,
ATPase dataset from last Friday Alignment clustal vs muscle Conserved part are aligned reproducibly.
MCB5472 Computer methods in molecular evolution Slides for comp lab 4/2/2014.
Phylogenetics.
Ayesha M.Khan Spring Phylogenetic Basics 2 One central field in biology is to infer the relation between species. Do they possess a common ancestor?
Bootstrap ? See herehere. Maximum Likelihood and Model Choice The maximum Likelihood Ratio Test (LRT) allows to compare two nested models given a dataset.Likelihood.
The gradualist point of view Evolution occurs within populations where the fittest organisms have a selective advantage. Over time the advantages genes.
Introns early Self splicing RNA are an example for catalytic RNA that could have been present in RNA world. There is little reason to assume that the RNA.
Phylip PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring phylogenies (evolutionary trees). PHYLIP is the most widely-distributed.
Phylogenetic reconstruction - How Distance analyses calculate pairwise distances (different distance measures, correction for multiple hits, correction.
The Coral of Life (Darwin)
Exercises: Write a script that determines the number of elements in = keys(%ash); #assigns keys to an array $number # determines number.
Why could a gene tree be different from the species tree?
Summary and Recommendations
Variant arose about years ago
MCB 5472 Intro to Trees Peter Gogarten Office: BSP 404
Reverend Thomas Bayes ( )
Summary and Recommendations
Presentation transcript:

ATPase dataset -> nj in figtree

ATPase dataset -> muscle -> phyml (with ASRV)– re-rooted

ATPase dataset -> parsimony – re-rooted gaps excluded

ATPase dataset -> muscle -> parsimony – re-rooted gaps as missing data

ATPase dataset -> parsimony – re-rooted

ATPase dataset -> muscle -> phyml – re-rooted

Why could a gene tree be different from the species tree? Lack of resolution Lineage sorting Gene duplications/gene loss (paralogs/orthologs) Gene transfer Systematic artifacts (e.g., compositional bias and long branch attraction)

Trees – what might they mean? Calculating a tree is comparatively easy, figuring out what it might mean is much more difficult. If this is the probable organismal tree: species B species A species C species D seq. from B seq. from A seq. from C seq. from D what could be the reason for obtaining this gene tree:

lack of resolution seq. from B seq. from A seq. from C seq. from D e.g., 60% bootstrap support for bipartition (AD)(CB)

long branch attraction artifact seq. from B seq. from A seq. from C seq. from D e.g., 100% bootstrap support for bipartition (AD)(CB) the two longest branches join together What could you do to investigate if this is a possible explanation? use only slow positions, use an algorithm that better corrects for ASRV

Gene transfer Organismal tree: species B species A species C species D Gene Transfer seq. from B seq. from A seq. from C seq. from D molecular tree: speciation gene transfer

Lineage Sorting Organismal tree: species B species A species C species D seq. from B seq. from A seq. from C seq. from D molecular tree: Genes diverge and coexist in the organismal lineage

Gene duplication gene duplication Organismal tree: species B species A species C species D molecular tree: seq. from D seq. from A seq. from C seq. from B seq.’ from D seq.’ from C seq.’ from B gene duplication molecular tree: seq. from D seq. from A seq. from C seq. from B seq.’ from D seq.’ from C seq.’ from B gene duplication molecular tree: seq. from D seq. from A seq.’ from D seq.’ from C gene duplication

Gene duplication and gene transfer are equivalent explanations. Horizontal or lateral Gene Ancient duplication followed by gene loss Note that scenario B involves many more individual events than A 1 HGT with orthologous replacement 1 gene duplication followed by 4 independent gene loss events The more relatives of C are found that do not have the blue type of gene, the less likely is the duplication loss scenario

Function, ortho- and paralogy molecular tree: seq.’ from D seq. from A seq.’ from C seq.’ from B seq. from D seq. from C seq. from B gene duplication The presence of the duplication is a taxonomic character (shared derived character in species B C D). The phylogeny suggests that seq’ and seq have similar function, and that this function was important in the evolution of the clade BCD. seq’ in B and seq’in C and D are orthologs and probably have the same function, whereas seq and seq’ in BCD probably have different function (the difference might be in subfunctionalization of functions that seq had in A. – e.g. organ specific expression)

Adam and Eve never met  Albrecht Dürer, The Fall of Man, 1504 Mitochondrial Eve Y chromosome Adam Lived approximately 40,000 years ago Lived 166, ,000 years ago Thomson, R. et al. (2000) Proc Natl Acad Sci U S A 97, Underhill, P.A. et al. (2000) Nat Genet 26, Mendez et al. (2013) American Journal of Human Genetics 92 (3): 454. Cann, R.L. et al. (1987) Nature 325, 31-6 Vigilant, L. et al. (1991) Science 253, The same is true for ancestral rRNAs, EF, ATPases!

From: speeding-research-into-human-origins.html?_r=1http:// speeding-research-into-human-origins.html?_r=1

The multiregional hypothesis From

Ancient migrations. The proportions of Denisovan DNA in modern human populations are shown as red in pie charts, relative to New Guinea and Australian Aborigines (3). Wallace's Line (8) is formed by the powerful Indonesian flow-through current (blue arrows) and marks the limit of the Sunda shelf and Eurasian placental mammals. Did the Denisovans Cross Wallace's Line? Science 18 October 2013: vol. 342 no

From: Archaic human admixture with modern Homo sapiens

For more discussion on archaic and early humans see: speeding-research-into-human-origins.html html

Phylip PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring phylogenies (evolutionary trees). PHYLIP is the most widely-distributed phylogeny package, and competes with PAUP* to be the one responsible for the largest number of published trees. PHYLIP has been in distribution since 1980, and has over 15,000 registered users. Output is written onto special files with names like "outfile" and "outtree". Trees written onto "outtree" are in the Newick format, an informal standard agreed to in 1986 by authors of a number of major phylogeny packages.Newick Input is either provided via a file called “infile” or in response to a prompt. written and distributed by Joe Felsenstein and collaborators (some of the following is copied from the PHYLIP homepage)

input and output

What’s in PHYLIP Programs in PHYLIP allow to do parsimony, distance matrix, and likelihood methods, including bootstrapping and consensus trees. Data types that can be handled include molecular sequences, gene frequencies, restriction sites and fragments, distance matrices, and discrete characters. Phylip works well with protein and nucleotide sequences Many other programs mimic the style of PHYLIP programs. (e.g. TREEPUZZLE, phyml, protml) Many other packages use PHYIP programs in their inner workings (e.g., PHYLO_WIN) PHYLIP runs under all operating systems Web interfaces are available

Programs in PHYLIP are Modular For example: SEQBOOT take one set of aligned sequences and writes out a file containing bootstrap samples. PROTDIST takes a aligned sequences (one or many sets) and calculates distance matices (one or many) FITCH (or NEIGHBOR) calculate best fitting or neighbor joining trees from one or many distance matrices CONSENSE takes many trees and returns a consensus tree …. modules are available to draw trees as well, but often people use treeview or njplottreeview njplot

The Phylip Manual is an excellent source of information. Brief one line descriptions of the programs are herehere The easiest way to run PHYLIP programs is via a command line menu (similar to clustalw). The program is invoked through clicking on an icon, or by typing the program name at the command line. > seqboot > protpars > fitch If there is no file called infile the program responds with: gogarten]$ seqboot seqboot: can't find input file "infile" Please enter a new file name>

program folder

menu interface example: seqboot and protpars on infile1

Sequence alignment: Removing ambiguous positions: Generation of pseudosamples: Calculating and evaluating phylogenies: Comparing phylogenies: Comparing models: Visualizing trees: FITCH TREE-PUZZLE ATV, njplot, or treeview Maximum Likelihood Ratio Test SH-TEST in TREE-PUZZLE NEIGHBOR PROTPARS PHYML PROTDIST T-COFFEE SEQBOOT FORBACK CLUSTALW MUSCLE CONSENSE Phylip programs can be combined in many different ways with one another and with programs that use the same file formats.