Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012) 57005.

Slides:



Advertisements
Similar presentations
Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
www-f1.ijs.si/~bonca LAW3M-05 Janez Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Thermodynamic Properties.
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Kitaoka lab Itohara Keita
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing Newton Institute, Cambridge Mott Physics, Sign Structure, and High-Tc.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Electronic structure of La2-xSrxCuO4 calculated by the
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Extended t-J model – the variational approach T. K. Lee Institute of Physics, Academia Sinica, Taipei, Taiwan July 10, 2007, KITPC, Beijing.
Superconductivity in Zigzag CuO Chains
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Complexity as a Result of Competing Orders in Correlated Materials. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville, TN, USA.
Simulating High Tc Cuprates T. K. Lee Institute of Physics, Academia Sinica, Taipei, Taiwan December 19, 2006, HK Forum, UHK.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Stability of RVB state with respect to charge modulations Rastko Sknepnek Iowa State University and DOE Ames Lab In collaboration with: Jun Liu and Joerg.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
What Pins Stripes in La2-xBaxCuO4? Neutron Scattering Group
Whither Strongly Correlated Electron Physics ? T.M.Rice ETHZ & BNL What`s so unique about the cuprates among the many materials with strongly correlated.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
SO(5) Theory of High Tc Superconductivity Shou-cheng Zhang Stanford University.
Yoshida Lab M1 Yoshitaka Mino. C ONTENTS Computational Materials Design First-principles calculation Local Density Approximation (LDA) Self-Interaction.
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Hall Effect in Sr 14−x Ca x Cu 24 O 41 E. Tafra 1, B. Korin-Hamzić 2, M. Basletić 1, A. Hamzić 1, M. Dressel 3, J. Akimitsu 4 1.Department of Physics,
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Pressure effect on the superconductivity of HgBa 2 Ca 2 Cu 3 O 8+  Shimizu Lab. M1 KAMADA Yukihiro.
‘Checkerboard’ Electronic Crystal State in Lightly-Doped Ca 2-x Na x CuO 2 Cl 2 Yuhki Kohsaka Curry Taylor J.C. Séamus Davis Cornell Tetsuo Hanaguri Yuhki.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Magnetic states of lightly hole- doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy Kitaoka Lab Kaneda Takuya F. Coneri, S.
Zheng-Yu Weng IAS, Tsinghua University
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
LIT-JINR Dubna and IFIN-HH Bucharest
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Mott Transition and Superconductivity in Two-dimensional
Magnon Another Carrier of Thermal Conductivity
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
Superconductivity and magnetism in iron-based superconductor
ARPES studies of unconventional
SUPERCONDUCTIVITY IN SYSTEMS WITH STRONG CORRELATIONS
Interfaces with High Temperature Superconductors Relevance of Interfacial Degrees of Freedom Thilo Kopp, Universität Augsburg (2) nanomagnetism at interfaces.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
Giant Superconducting Proximity Effect in Composite Systems Chun Chen and Yan Chen Dept. of Physics and Lab of Advanced Materials, Fudan University,
Oxide Heterostructure
B4 Single crystal growth of tunable quantum spin systems
Superconductivity in Bismuth Oxide Compounds
Chiral Spin States in the Pyrochlore Heisenberg Magnet
Phases of Mott-Hubbard Bilayers Ref: Ribeiro et al, cond-mat/
Presentation transcript:

Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012) 57005

introduction  Introduction ・ High-Tc Cuprate Superconductors (LSCO) ・ t-J Model  Motivation  Calculation model ・ t-J Model for multilayer cuprates  Results & Discussion ・ Calculation ・ Comparison between NMR Exp. and theory  Summary

La 2-x Sr x CuO 4 (LSCO) crystal structures of multilayered cuprates La 3+ ⇒ Sr 2+ Sr ‐e‐e ‐e‐e Hole dope charge- reservoir layer La 2-x 3+ Sr x 2+ Cu (2+x)+ O 4 2- High-T c Cuprate Superconductors introduction CuO 2 plane charge- reservoir layer Experiment

La 2 CuO 4 Cu 2+ (3d 9 ) Antiferromagnetism(AFM ) t≪U ⇒ Mott insulator Cu O t O U O t-J model introduction x 2 -y 2 3z 2 -r 2 xy yz zx J ∝ t 2 /U

La 2 CuO 4 Cu 2+ (3d 9 ) La 3+ 2-x Sr 2+ x CuO 4 Cu 2+x Antiferromagnetism(AFM ) t≪U ⇒ Mott insulator Superconductivity(SC) Cu O t O U O t-J model introduction x 2 -y 2 3z 2 -r 2 xy yz zx x 2 -y 2 3z 2 -r 2 xy yz zx Sr t Cu O J ∝ t 2 /U

t-J model AF+SC t-J model motivation due to disorder multilayer coexist Spin glass overhang of AFM

t-J model AF+SC t-J model motivation Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 similar crystal structures of multilayered cuprates

t-J model AF+SC t-J model motivation Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 only single-layer J=0.3t Variational Monte Carlo on t-J model M AFM Δ SC S. Pathak et al. PRL 102, (2009) G. J. Chen et al., PRB 42, 2662 (1990). T. Giamarchi et al., PRB 43, (1991). A. Himeda and M. Ogata, PRB 60, R9935 (1999). similar Include interlayer coupling in t-J model. T=0K ground state SC gap Magnetic moment

t-J model AF+SC t-J model motivation due to disorder multilayer Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 Include interlayer coupling in t-J model. coexist Spin glass overhang of AFM similar only single-layer

t-J model motivation crystal structures of multilayered cuprates Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 S. Pathak et al. PRL 102, (2009) J=0.3t Variational Monte Carlo on t-J model M AFM Δ SC G. J. Chen et al., PRB 42, 2662 (1990). T. Giamarchi et al., PRB 43, (1991). A. Himeda and M. Ogata, PRB 60, R9935 (1999).) T=0K ground state 4-layer ?

t : hopping integral J : super exchange coupling Cu O t J t’ Charge Reservoir P G : Gutzwiller projection operator c : an annihilation operator P G = 10

Charge Reservoir t⊥t⊥ J⊥J⊥ Cu O t J t’

d x i : hole concentration of IP x o : hole concentration of OP x : average hole concentration x =( x i + x o )/2 Charge Reservoir CV 2 / 2 E es : electrostatic energy d : distance between two adjacent CuO 2 layers E× 2 S=ρS/ε r ε 0 Gauss' law E : electric field a : lattice constant ε r : relative dielectric constant S ρ=ex/a 2 E

Total Hamiltonian result ε r =50 Experiments on multilayer can capture the essential physics of single-layer t-J model. OPOP OPOP IP Magnetic moment ε r =50 IP OPOP OPOP ε r =200 SC gap single-layer results(dashed line) SC gap is decided by single-layer property. Magnetic moment is also decided by single-layer property. SC gap Magnetic moment ε r =200

result OPOP OPOP IP Magnetic moment SC gap single-layer results (dashed line) Charge Reservoir ε r =200 Charge Reservoir ε r =50 Independent of ε r Total Hamiltonian IP OPOP OPOP ε r =200 ε r =50 single-layer results(dashed line) ε r =200 ε r =50

discussion y NMR Exp.Theory x op m op x ip m ip εrεr m op m ip estimate Charge Reservoir x op x ip Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 under dope over dope

discussion y NMR Exp.Theory x op m op x ip m ip εrεr m op m ip estimate Magnetic moment calculated by theory Charge Reservoir x op x ip Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 under dope over dope

y NMR Exp.Theory x op m op x ip m ip εrεr m op m ip discussion Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 over dope NMR Theory Magnetic moment under dope Large!!

y NMR Exp.Theory x op m op x ip m ip εrεr m op m ip discussion ε r =200 ε r =50 IP OPOP OPOP x c (Theory) =0.2 x c (NMR) =0.16 Hidekazu Mukuda et al., J. Phys. Soc. Jpn. 81 (2012) time Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 over dope under dope

y NMR Exp.Theory x op m op x ip m ip εrεr m op m ip discussion better agreement with experiment Theory NMR Magnetic moment Sample Ba 2 Ca 3 Cu 4 O 8 (F y O 1−y ) 2 over dope under dope

We consider 4-layer cuprates as t-J model including interlayer coupling. Magnetic moment and SC gap are decided by single-layer property. The result of theory is good agreement with that of experiment. It is the future problem to pursue the compatibility of values calculated from experiments and theories. Theory NMR