Instructor: Po-Yu Kuo (郭柏佑) 國立雲林科技大學 電子工程系

Slides:



Advertisements
Similar presentations
An Electronic System Power Supply Example
Advertisements

DC-DC Fundamentals 1.4 Charge Pump Regulator
線性穩壓器 (2) Linear Regulators (2) Instructor: Po-Yu Kuo ( 郭柏佑 ) 國立雲林科技大學 電子工程系.
Forward Type Switched Mode Power Supply
Mihai Albulet 윤석현. A class D amplifier is a switching-mode amplifier that uses two active device driven in a way that they are alternately switched ON.
EE462L, Spring 2014 DC−DC SEPIC (Converter)
M2-3 Buck Converter Objective is to answer the following questions: 1.How does a buck converter operate?
EE462L, Fall 2011 DC−DC Buck/Boost Converter
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
Ch6 DC-DC Converters 6-1 Linear voltage regulators Fig. 6.1 Adjustingbasecurrent, => linear DC-DC converter orlinear regulator Thetransistor operates in.
Diode Applications Half wave rectifier and equivalent circuit with piece-wise linear model Ideal Vc Rf vi v i = VM sin (t)
7. Introduction to DC/DC Converters
Introduction to DC-DC Conversion – Cont.
Three Phase Controlled Rectifiers
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
Alternating Current Circuits
Chapter 20 Quasi-Resonant Converters
9/29/2004EE 42 fall 2004 lecture 131 Lecture #13 Power supplies, dependent sources, summary of ideal components Reading: Malvino chapter 3, Next:
Switching-Mode Regulators
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Power Electronics Lecture-10 D.C to D.C Converters (Choppers)
Presented By: Er. Ram Singh (Asstt. Prof.) Deptt. Of EE
升壓式轉換器 Boost Converter Instructor: Po-Yu Kuo ( 郭柏佑 ) 國立雲林科技大學 電子工程系.
Copyright by UNIT III DC Choppers 4/17/2017 Copyright by
Chapter 20 Quasi-Resonant Converters
Waveforms of the half-wave ZCS quasi-resonant switch cell
DC-DC Switch-Mode Converters
Controlled Rectifiers
Chapter 4 AC to AC Converters
線性穩壓器 (1) Linear Regulators (1) Instructor: Po-Yu Kuo ( 郭柏佑 ) 國立雲林科技大學 電子工程系.
Power Electronics Notes 07A Introduction to DC/DC Converters
Chapter 22 Alternating-Current Circuits and Machines.
1 Fly-back Converter fall Basic Topology of a Fly-back Converter.
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
Alternating Current Circuits
Zero Voltage Switching Quasi-resonant Converters
DC−DC Buck Converter 1. DC-DC switch mode converters 2.
Lecture # 12&13 SWITCHING-MODE POWER SUPPLIES
Chapter 6 Voltage Regulators - Part 2-.
POWER ELECTRONICS POWER COMPUTATIONS
Chapter 3 DC to DC Converters
Chapter 31 Lecture 33: Alternating Current Circuits: II HW 11 (problems): 30.58, 30.65, 30.76, 31.12, 31.26, 31.46, 31.56, Due Friday, Dec 11. Final.
Chapter 8 Alternating Current Circuits. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC circuit.
A NOVEL CONTROL METHOD OF DC-DC CONVERTERS Dr.M.Nandakumar Professor Department of Electrical engineering Govt. Engineering College Thrissur 1 Dept. of.
DC−DC Buck Converter.
Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL.
Introduction to DC-DC Conversion – Cont.
Prof R T KennedyPOWER ELECTRONICS 21 EET 423 POWER ELECTRONICS -2.
1 Surge Current in the Capacitor filter Initially the filter capacitor is uncharged. At the instant the switch is closed, voltage is connected to the bridge.
Function Generators. FUNCTION GENERATORS Function generators, which are very important and versatile instruments. provide a variety of output waveforms.
CSE251 Diode Applications – Rectifier Circuits. 2 Block diagram of a DC power supply. One of the most important applications of diodes is in the design.
Gandhinagar Institute of Technology
CCM Power Factor Correction Inductor Design with Powder Core
Different Types of Voltage Regulators with Working Principle.
بحث مشترك منشور فى مؤتمر دولى متخصص (منشور ، التحكيم علي البحث الكامل) B. M. Hasaneen and Adel A. Elbaset البحث التاسع 12 th International Middle East.
Switching-Mode Regulators
UNIT III DC Choppers.
Half-wave Rectifier.
Islamic University of Gaza
DC-DC PWM Converters Lecture Note 5.
DC Choppers 1 MH1032/brsr/A.Y /pe/DC CHOPPERS
Power Converter’s Discontinuous Current Mode Operation
UNIT-7 CHOPPERS 12/1/2018.
Reading: Malvino chapter 3, Next: 4.10, 5.1, 5.8
Power Computations Power and Energy
DC-DC Switch-Mode Converters
Alternating Current Circuits
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 2
POWER ELECTRONICS DC-DC CONVERTERS (CHOPPERS) PART 1
Presentation transcript:

Instructor: Po-Yu Kuo (郭柏佑) 國立雲林科技大學 電子工程系 降壓式轉換器 Buck Converter Instructor: Po-Yu Kuo (郭柏佑) 國立雲林科技大學 電子工程系

Switching Converter In a switching converter circuit, different from the linear regulator, the transistor operates as an electronic switch by being completely ON or completely OFF. This circuit is also known as a dc chopper. Different researchers use different names for this converter topology, some of them are: switched mode power converters, switch mode power supplies and switching regulators. In this course, we use switch mode power converters (SMPCs). In order to improve the efficiency, converter with only lossless components should be used. These include inductors, capacitors, and switches.

Ideal Switching Converter For an ideal switch, power consumption is zero, in both the ON (switch closed) and OFF (switch open) stages PowerON = VSW · ISW = 0(ISW) = 0 PowerOFF = VSW · ISW = VSW(0) = 0 Recall: average absorbed power by inductor and capacitor for steady-state periodic operation is 0 Theoretically ideal switching converter is a lossless system

Ideal Switching Converter Fig. 2 shows a basic switching converter with an ideal switch. The output is the same as the input when the switch is closed, and the output is zero when the switch is open. Periodic opening and closing of the switch results in the pulse output and the average or dc component of the output is The dc component of the output is then controlled by the duty cycle D, which is the fraction of the period that the switch is closed:

Buck Converter By adjusting the duty cycle D, the load will have an average output voltage VsD. However, most of electronic loads require a continuous and steady output voltage as shown in Fig. 3(a). However, problem occurs when the switch is OFF. The inductor current cannot change instantaneously and a very high voltage spike will generate across the switch and will cause a spark across the switch. So, a second switch as shown in Fig. 3(b) is needed to make a functional switching converter.

Buck Converter The operation of the converter is as follows: State 1: S1 is ON and S2 is OFF vL = Vs – Vo → iL ramps up State 2: S2 is ON and S1 is OFF vL = 0 – Vo → iL ramps down S1, S2 , L and C are all lossless elements → no energy loss (theoretically) → η = 1 can be achieved Since the switching converter consists of 2 reactive elements, the inductor L and the capacitor C, it is known as a second order converter.

Steady State Analysis

Steady State Analysis The buck converter has the following properties in steady state : The inductor current is periodic: iL(t+T) = iL(t) The average inductor voltage is zero The average capacitor current is zero The power supplied by the source = the power delivered to the load. For ideal components: Ps = Po and for non-ideal components: Ps = Po + losses Following assumptions should be made before analyzing the buck converter: The circuit is operating in steady state. i.e. steady-state analysis The inductor current is continuous and always positive. i.e. CCM operation The capacitor is very large and output voltage is held constant at Vo. Io=Vo/R The component is ideal. i.e. Ps = Po

Steady State Analysis When the switch is closed, the diode is reverse biased & the voltage across the inductor is The derivative of the inductor current is positive → the current increases linearly When the switch is open, the diode becomes forward biased and the voltage across the inductor is The derivative of the inductor current is negative → the current decreases linearly

Steady State Analysis In steady state, the net inductor current = 0. i.e. or Solving for Vo gives Vo = VsD which is expected. As D < 1, the buck converter can only produce an output which is less than or equal to the input Output voltage only depends on the input voltage. If the input voltage fluctuates, the output voltage can be regulated by adjusting the duty ratio appropriately An alternative derivation using volt-second balance equation (conservation of flux in inductor): average inductor voltage is zero for periodic operation. i.e.

Inductor Value Since the average current of the capacitor is zero, the average current of the inductor is the same as the average current of the load. i.e. IL=IR=Vo/R. Now the change of inductor current or inductor ripple: The maximum & minimum inductor current can be computed as

Inductor Current Since the inductor current is always positive (CCM). To satisfy ILmin must be greater than 0 The minimum inductance value required for CCM operation is

Buck Converter: Output Voltage Ripple In the preceding analysis, we assume the capacitor is very large to keep the output voltage to a constant value. However, in practice, the output voltage cannot be kept perfectly constant with a finite capacitor value. The variation of the output voltage vr (known as ripple voltage) can be computed from the voltage-current relationship of the capacitor The capacitor current: iC = iL – iR (positive current → capacitor is charging) Ripple voltage is calculated as follows:

Buck Converter: Waveforms

Buck Converter: Waveforms

The tradeoff of high fs is the increased power loss in the switches Buck Converter: Design Considerations When fs increases, both Lmin for producing CCM operation and C for limiting the output ripple decrease. Therefore, higher switching frequency is desirable to reduce L and C values. The tradeoff of high fs is the increased power loss in the switches The inductor wire must be rated at the rms current and the core should not saturate for peak inductor current. The capacitor must be selected to withstand peak output voltage and to carry the required rms current