Aluminium Kinetic Inductance Detectors at 1.54 THz limited by photon noise and generation-recombination noise Pieter de Visser, Jochem Baselmans, Juan.

Slides:



Advertisements
Similar presentations
Production of Photon Triplets James Cockburn Introduction References MethodsResultsConclusion The method works by having down- conversion sources be pumped.
Advertisements

Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
RFMTC11 GÄVLE OCTOBER 4–5th 2011 Industrial radar sensor arrays and their applications October 04, 2011 P. Vainikainen, V. Mikhnev, Ye. Maksimovitch, M.-K.
Superinductor with Tunable Non-Linearity M.E. Gershenson M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev * Department of Physics and Astronomy,
Semiconductor Photoconductive Detectors S W McKnight and C A DiMarzio.
Patrick Sebbah Nicolas Bachelard, Sylvain Gigan Institut Langevin, ESPCI ParisTech CNRS UMR 7587, Paris A. Christian Vanneste, Xavier Noblin LPMC – Université.
1/42 Changkun Park Title Dual mode RF CMOS Power Amplifier with transformer for polar transmitters March. 26, 2007 Changkun Park Wave Embedded Integrated.
Hybrid MKIDs with ground-side deposition - A novel method for microwave detection with a resonator separated from antenna H. Watanabe, M. Hazumi a, H.
Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik
EE 230: Optical Fiber Communication Lecture 11 From the movie Warriors of the Net Detectors.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
Single Photon Counting Detectors for Submillimeter Astrophysics: Concept and Electrical Characterization John Teufel Department of Physics Yale University.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
Dark Current Measurements of a Submillimeter Photon Detector John Teufel Department of Physics Yale University Yale: Minghao Shen Andrew Szymkowiak Konrad.
Ultimate Cold-Electron Bolometer with Strong Electrothermal Feedback Leonid Kuzmin Chalmers University of Technology Bolometer Group Björkliden
Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology,
HIFI Mixer CDR Band 3 and 4 Mixer Units RF Design and Performance SRON B. Jackson, G. de Lange, W. Laauwen, L. de Jong DIMES, TU Delft T. Zijlstra, M.
Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators CHEN, MU.
Broad-band nano-scale light propagation in plasmonic structures Shanhui Fan, G. Veronis Department of Electrical Engineering and Ginzton Laboratory Stanford.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Basic Detection Techniques Front-end Detectors for the Submm Andrey Baryshev Lecture on 21 Sept 2006.
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
Random phase noise effect on the contrast of an ultra-high intensity laser Y.Mashiba 1, 2, H.Sasao 3, H.Kiriyama 1, M.R.Asakawa 2, K.Kondo 1, and P. R.
Cardiff University Astronomy Instrumentation Group IRAM Camera meeting October 13-14, Cardiff University Astronomical Instrumentation Peter Ade.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
A. Monfardini, IAP 26/06/ Kinetic Inductance Detectors for CoRE-like applications Potentially involving (from the technical point-of-view): - Grenoble.
Physical Phenomena for TeraHertz Electronic Devices
LEKIDs effort in Italy Martino Calvo B-Pol workshop, IAP Paris, July.
1 High-Speed Broadband Polarization- Independent Optical Clock Recovery in a Silicon Detector OFC 2006, OWW4 March 8, 2006 Amir Ali Ahmadi Reza Salem Thomas.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
High efficiency generation and detection of terahertz pulses using laser pulses at tele- communication wavelengths A.Schneider et al. OPTICS EXPRESS 5376/Vol.14,No.12(2006)
A. Monfardini, IAP 30/07/ NIKA (Néel IRAM KID Array) First light at the 30-m IRAM dish NIKA collaboration: - Institut Néel - Grenoble - AIG - Cardiff.
Kinetic Inductance Detectors SRON Stephen Yates, Jochem Baselmans, Andrey Baryshev, Jan Joost Lankwarden, Henk Hoevers. TNO G. Gerini, A. Neto, D. Bekers.
Injection Locked Oscillators Optoelectronic Applications E. Shumakher, J. Lasri, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION.
Generation and detection of ultrabroadband terahertz radiation
Astronomy detectors Andy Vick (UKATC). Introduction and contents General overview of astronomy detectors, mainly visible, IR, sub-mm –Radio is a different,
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Ultrasensitive Graphene THz Photon Detectors D. Prober, Yale Univ. Depts. Applied Physics and Physics with thanks for collaborators and Yale colleagues.
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Electrical characterization of a superconducting hot spot microbolometer S.Cibella, R. Leoni, G. Torrioli, M. G. Castellano, A. Coppa, F. Mattioli IFN-CNR,
I. Milostnaya, A. Korneev, M. Tarkhov, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, O. Okunev, G. Chulkova, K. Smirnov, and G. Gol’tsman.
Development of an Antenna-coupled Al Superconducting Tunnel Junction for a detection of cosmic microwave background B-mode polarization H. Ishino 4, M.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Jan 2004 Chuck DiMarzio, Northeastern University b-1 ECEG287 Optical Detection Course Notes Part 3: Noise and Photon Detection Profs. Charles A.
Experimental investigation of dynamic Photothermal Effect
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
Page 1 Science Payload and Advanced Concepts Office STJs as Photon Detectors.
Photodetectors What is photodetector (PD)? Photodetector properties
1 IEE5668 Noise and Fluctuations Prof. Ming-Jer Chen Dept. Electronics Engineering National Chiao-Tung University 02/25/2015 Lecture: Introduction.
Status DETECTORS: -Baseline for 2mm: -Baseline for 2mm: NICA 5a (144 pixels, IRAM, 30nm sputtering); average sensitivity: 6mK/Hz 0.5 (1Hz) corresponding.
Demonstration of a Far-IR Detector for Space Imaging Principal Investigators: C. Darren Dowell (326), Jonas Zmuidzinas (Caltech) Co-Investigators: Peter.
Measurements of High-Field THz Induced Photocurrents in Semiconductors Michael Wiczer University of Illinois – Urbana-Champaign Mentor: Prof. Aaron Lindenberg.
MAKO A 350/850  m camera designed for operation at the Caltech Submillimeter Observatory Christopher McKenney.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
STATUS OF R&D AT UCSB Paul Szypryt Mazin Lab August 26, 2013.
Topic Report Photodetector and CCD
1 Topic Report Photodetector and CCD Tuan-Shu Ho.
Charles University Prague Institute of Particle and Nuclear Physics Zdeněk Doležal, Peter Kodyš, et al.
Circuit QED Experiment
Input Stages for Radio Systems (Low Noise Amplifiers) (LNAs)
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Optical Response of TES Bolometer Arrays for SAFARI
Enrica Chiadroni LNF-INFN 20 aprile 2010
Quasi-Optical Broadband Detectors
Basic Detection Techniques Front-end Detectors for the Submm
Present status of the laser system for KAGRA
New Results on Photothermal Effect: Size and Coating Effect
Advanced Optical Sensing
S21 (at center frequency) 19 dB
Presentation transcript:

Aluminium Kinetic Inductance Detectors at 1.54 THz limited by photon noise and generation-recombination noise Pieter de Visser, Jochem Baselmans, Juan Bueno, Nuria Llombart, Teun Klapwijk SRON TU Delft, Faculty of Applied Sciences TU Delft, Faculty of Electrical Engineering Mathematics and Computer Siences

Optical Noise Equivalent 1.54 THz GR - Noise Photon Noise

Operation principle Day et al, Nature 425, 817 (2003) 2Δ2Δ Cooper Pairs Quasiparticles h Photons break Cooper pairs => quasiparticles Higher resistance and kinetic inductance Dip depth / amplitude: resistance Resonant frequency / phase: inductance

Anticipated fundamental limits KID is a pair breaking detector: fluctuations in the quasiparticle number Photon noise (= generation noise) Recombination noise Generation-recombination noise Prediction from dark experiments: NEP of 2 x W/Hz 1/2 limited by the presence of excess quasiparticles

Design All Aluminium KID Central Line: 50 nm Al Groundplane: 100 nm Al Halfwave resonator with isolated central strip X-slot Antenna, broad band around 1.54 THz 2 mm silicon elliptical lenses Design suitable for higher frequencies >1.54 THz

Controlled optical setup 8 optical filters! Box-in-box setup Baselmans et al. JLTP 167, 360 (2012) J. Bueno, Poster 106 (Thursday)

Large range in optical power

Fundamental limit: Photon Noise Optical Power (fW) Random arrival rate of the optical photons + recombination noise

Generation-recombination noise De Visser et al. PRL 106, (2011) Wilson & Prober, PRL, 87, (2001) Quasiparticle fluctuations

Optical Noise Equivalent Power GR - Noise Photon Noise Photon noise limited NEP => Measure of optical efficiency: 48%

Optical responsivity + lifetime: Microwave readout power dependent De Visser et al. APL 100, (2012) Goldie, SuST, 26, (2013)

Microwave readout power: Excess quasipartilces AND nonlinear reponse due to redistribution of quasiparticles arXiv: Poster 104 (Monday)

Summary Kinetic Inductance Detector at 1.54 THz – Fundamental noise sources for pair breaking detectors revealed: Photon noise limited Generation-recombination noise => excess quasiparticles – NEP 3.8 x W/Hz 1/2, 48% optical efficiency Well controlled optical setup, large power range 1.54 THz experiment - arXiv: Microwave response - arXiv:

KID at 1.54 THz GR - Noise Photon Noise Optical efficiency: 48% arXiv: