Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions.

Slides:



Advertisements
Similar presentations
Chapter 5: Molecules of Life
Advertisements

Protein Structure and Function Review: Fibrous vs. Globular Proteins.
Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific sequence 2.A protein’s function depends.
Proteins Big Idea 4: Biological Systems Interact.
Cohesion Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion Cohesion helps the transport of water against gravity.
Proteins Function and Structure.
Pages 42 to 46.  Chemical composition  Carbon  Hydrogen  Oxygen  Nitrogen  Sulfur (sometimes)  Monomer/Building Block  Amino Acids (20 different.
Proteins include a diversity of structures, resulting in a wide range of functions Protein functions include structural support, storage, transport, enzymes,
Proteins. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range.
WOW Macromolecules Polymers.. 1. They all contain Carbon 1.Has 4 valence electrons What do all macromolecules have in common?
© 2012 Pearson Education, Inc. Lecture by Edward J. Zalisko PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor,
Proteins account for more than 50% of the dry mass of most cells
Proteins & Nucleic Acids Proteins make up around 50% of the bodies dry mass and serve many functions in the body including: – Enzymes - Catalysts that.
Proteins Function and Structure. Proteins more than 50% of dry mass of most cells functions include – structural support – storage, transport – cellular.
You Must Know How the sequence and subcomponents of proteins determine their properties. The cellular functions of proteins. (Brief – we will come back.
Proteins account for more than 50% of the dry mass of most cells
BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.
1 Chemicals of life. 2015/9/9 2 The Macromolecules of cells.
Proteins account for more than 50% of the dry mass of most cells
Proteins Chapter 3 A. P. Biology Mr. Knowles Liberty Senior High School.
Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein.
A protein’s function depends on its specific conformation (shape) A functional proteins consists of one or more polypeptides that have been precisely twisted,
Proteins have many structures, resulting in a wide range of functions
Molecules of Life II CHAPTER 3 Proteins Amino Acid Monomers Polypeptide (protein) Polymers Levels of Protein Structure Importance of Structure to Function.
NOTES: Ch 5, part 2 - Proteins & Nucleic Acids Proteins have many structures, resulting in a wide range of functions ● Proteins account for more.
Proteins!. Proteins Proteins account for more than 50% of the dry mass of most cells Monomer: amino acids 20 amino acids used in cells Central carbon.
Operone lac Principles of protein structure and function Function is derived from structure Structure is derived from amino acid sequence Different.
Cohesion Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion Cohesion helps the transport of water against gravity.
Macromolecules Part 3 Proteins. Proteins! Functions of Proteins – Structural support – Storage – Transport – Cellular communications – Movement – Defense.
AP Biology Discuss the following with your group and be prepared to discuss with the class 1. Why is the shape of a molecule important? 2. How is a covalent.
The Structure and Function of Macromolecules Chapter Proteins.
Proteins are instrumental in about everything that an organism does. These functions include structural support, storage, transport of other substances,
THE STRUCTURE AND FUNCTION OF MACROMOLECULES Proteins - Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected to a specific.
The Structure and Function of Macromolecules Proteins & Nucleic Acids.
Macromolecules of Life Proteins and Nucleic Acids
Introduction to Proteins
Objective 7: TSWBAT recognize and give examples of four levels of protein conformation and relate them to denaturation.
5.4: Proteins Introduction
Proteins.
Chapter 3 Proteins.
1 Proteins Proteins are polymers made of monomers called amino acids All proteins are made of 20 different amino acids linked in different orders Proteins.
1 2- Proteins Many Structures, Many Functions 1.A polypeptide is a polymer of amino acids connected in a specific sequence 2.A protein’s function depends.
PROTEINS Characteristics of Proteins Contain carbon, hydrogen, oxygen, nitrogen, and sulfur Serve as structural components of animals Serve as control.
PROTEINS L3 BIOLOGY. FACTS ABOUT PROTEINS: Contain the elements Carbon, Hydrogen, Oxygen, and NITROGEN Polymer is formed using 20 different amino acids.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section D: Proteins -
4.A.1 Biomolecules The subcomponents of biological molecules and their sequence determine the properties of that molecule.
The Structure and Function of Macromolecules. II. Classes of Organic Molecules: What are the four classes of organic molecules?
Unit 4.A 1 – Biomolecules.
Chapter 5 The Structure and Function of Macromolecules
Chapter 5 Proteins.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Proteins account for more than 50% of the dry mass of most cells
Protein Structure.
Chapter 5 Proteins.
Proteins Section 3.4.
Protein Structure Amino Acids Polypeptide Levels of Structure
Contains Carbon Carbohydrates Lipids Nucleic Acids Proteins.
Proteins.
Proteins account for more than 50% of the dry mass of most cells
Amino acids are linked by peptide bonds
Proteins account for more than 50% of the dry mass of most cells
Chapter 3 Proteins.
The Structure and Function of Macromolecules
Proteins are involved in
Protein Structure Chapter 14.
Proteins account for more than 50% of the dry mass of most cells
Proteins Genetic information in DNA codes specifically for the production of proteins Cells have thousands of different proteins, each with a specific.
Proteins.
Proteins Proteins have many structures, resulting in a wide range of functions Proteins do most of the work in cells and act as enzymes 2. Proteins are.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage, transport, cellular communications, movement, and defense against foreign substances [Animations are listed on slides that follow the figure]

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Enzymes are a type of protein that acts as a catalyst, speeding up chemical reactions Enzymes can perform their functions repeatedly, functioning as workhorses that carry out the processes of life

LE 5-16 Substrate (sucrose) Enzyme (sucrose) Fructose Glucose

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Polypeptides Polypeptides are polymers of amino acids A protein consists of one or more polypeptides

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Amino Acid Monomers Amino acids are organic molecules with carboxyl and amino groups Amino acids differ in their properties due to differing side chains, called R groups Cells use 20 amino acids to make thousands of proteins

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Amino Acid Polymers Amino acids are linked by peptide bonds A polypeptide is a polymer of amino acids Polypeptides range in length from a few monomers to more than a thousand Each polypeptide has a unique linear sequence of amino acids

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Determining the Amino Acid Sequence of a Polypeptide The amino acid sequences of polypeptides were first determined by chemical methods Most of the steps involved in sequencing a polypeptide are now automated

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Protein Conformation and Function A functional protein consists of one or more polypeptides twisted, folded, and coiled into a unique shape The sequence of amino acids determines a protein’s three-dimensional conformation A protein’s conformation determines its function Ribbon models and space-filling models can depict a protein’s conformation

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Four Levels of Protein Structure The primary structure of a protein is its unique sequence of amino acids Secondary structure, found in most proteins, consists of coils and folds in the polypeptide chain Tertiary structure is determined by interactions among various side chains (R groups) Quaternary structure results when a protein consists of multiple polypeptide chains Animation: Protein Structure Introduction Animation: Protein Structure Introduction

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Primary structure, the sequence of amino acids in a protein, is like the order of letters in a long word Primary structure is determined by inherited genetic information Animation: Primary Protein Structure Animation: Primary Protein Structure

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The coils and folds of secondary structure result from hydrogen bonds between repeating constituents of the polypeptide backbone Typical secondary structures are a coil called an alpha helix and a folded structure called a beta pleated sheet Animation: Secondary Protein Structure Animation: Secondary Protein Structure

LE 5-20b Amino acid subunits  pleated sheet  helix

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Tertiary structure is determined by interactions between R groups, rather than interactions between backbone constituents These interactions between R groups include hydrogen bonds, ionic bonds, hydrophobic interactions, and van der Waals interactions Strong covalent bonds called disulfide bridges may reinforce the protein’s conformation Animation: Tertiary Protein Structure Animation: Tertiary Protein Structure

LE 5-20d Hydrophobic interactions and van der Waals interactions Polypeptide backbone Disulfide bridge Ionic bond Hydrogen bond

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Quaternary structure results when two or more polypeptide chains form one macromolecule Collagen is a fibrous protein consisting of three polypeptides coiled like a rope Hemoglobin is a globular protein consisting of four polypeptides: two alpha and two beta chains Animation: Quaternary Protein Structure Animation: Quaternary Protein Structure

LE 5-20e  Chains  Chains Hemoglobin Iron Heme Collagen Polypeptide chain Polypeptide chain

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Sickle-Cell Disease: A Simple Change in Primary Structure A slight change in primary structure can affect a protein’s conformation and ability to function Sickle-cell disease, an inherited blood disorder, results from a single amino acid substitution in the protein hemoglobin

LE 5-21a Red blood cell shape Normal cells are full of individual hemoglobin molecules, each carrying oxygen. 10 µm Red blood cell shape Fibers of abnormal hemoglobin deform cell into sickle shape.

LE 5-21b Primary structure Secondary and tertiary structures Normal hemoglobin Val His Leu 4 Thr 5 Pro 6 Glu 7 Primary structure Secondary and tertiary structures Sickle-cell hemoglobin Val His Leu 4 Thr 5 Pro 6 ValGlu 7 Quaternary structure Normal hemoglobin (top view)         Function Molecules do not associate with one another; each carries oxygen. Quaternary structure Sickle-cell hemoglobin Function Molecules interact with one another to crystallize into a fiber; capacity to carry oxygen is greatly reduced. Exposed hydrophobic region  subunit

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings What Determines Protein Conformation? In addition to primary structure, physical and chemical conditions can affect conformation Alternations in pH, salt concentration, temperature, or other environmental factors can cause a protein to unravel This loss of a protein’s native conformation is called denaturation A denatured protein is biologically inactive

LE 5-22 Denaturation Renaturation Denatured proteinNormal protein