CS61C L03 Introduction to C (pt 1) (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia inst.eecs.berkeley.edu/~cs61c CS61C.

Slides:



Advertisements
Similar presentations
Assembly Language for Intel-Based Computers, 4 th Edition Chapter 1: Basic Concepts (c) Pearson Education, All rights reserved. You may modify and.
Advertisements

C Programming - Lecture 5
CS 61C L02 Number Representation (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
COMP3221: Microprocessors and Embedded Systems--Lecture 1 1 COMP3221: Microprocessors and Embedded Systems Lecture 3: Number Systems (I)
COMP3221 lec05-numbers-I.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lecture 5: Number Systems – I
CS61C L04 Introduction to C (pt 2) (1) Garcia, Fall 2011 © UCB Reference slides You ARE responsible for the material on these slides (they’re just taken.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 6 – Introduction to MIPS Data Transfer & Decisions I Pieter Abbeel’s recent.
CS61C L03 Introduction to C (pt 1) (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L03 Introduction to C (pt 2) (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS 61C L03 Introduction to C (1)Harvey / Wawrzynek Fall 2003 © UCB 8/29/2003  Brian Harvey ( John Wawrzynek  (Warznek) (
CS 61C L02 Number Representation (1)Harvey / Wawrzynek Fall 2003 © UCB 8/27/2003  Brian Harvey ( John Wawrzynek  (Warznek) (
CS61C L05 C Structures, Memory Management (1) Garcia, Spring 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L04 C Pointers (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS 61C L09 Introduction to MIPS: Data Transfer & Decisions I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L03 Introduction to C (pt 1) (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L04 Introduction to C (pt 2) (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L3 C Pointers (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
The slides are modified from Dan Garcia,
CS 61C L02 Number Representation (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61CL L01 Introduction (1) Huddleston, Summer 2009 © UCB Jeremy Huddleston inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture #1 – Introduction,
CS61C L05 Introduction to C (pt 3) (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
Machine Representation/Numbers Lecture 3 CS 61C Machines Structures Fall 00 David Patterson U.C. Berkeley
CS61C L04 Introduction to C (pt 2) (1) Garcia, Fall 2011 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L2 Number Representation & Introduction to C (1) Chae, Summer 2008 © UCB Albert Chae Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS 61C L2 Introduction to C (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 2: Introduction To C
CS61C L03 Introduction to C (pt 1) (1) Garcia, Spring 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L4 Structs (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #4: Strings & Structs
CS 61C L03 C Arrays (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #3: C Pointers & Arrays
I just discovered that my iPhone has been quietly watching me; my graph is on the right. There’s an app that can visualize this data quickly, allowing.
CS61C L05 Introduction to C (pt 3) (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L2 Number Representation & Introduction to C (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L03 Introduction to C (pt 1) (1) Garcia, Spring 2008 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
CS61C L04 C Pointers (1) Garcia, Spring 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS 61C L03 C Pointers (1)Garcia / Patterson Fall 2002 © UCB CS61C - Machine Structures Lecture 3 C pointers  Dan Garcia (
CS61C L03 Introduction to C (pt 1) (1) Garcia, Fall 2011 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
COMP3221 lec07-numbers-III.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lecture 7: Number Systems - III
CS 61C L03 Introduction to C (pt 1) (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L04 C Pointers (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
Prof Ali Javey’s group’s may have found the replacement for Silicon to make transistors. (Silicon will be too expensive and “leaky”.) They can make “fast,
CS61C L2 Number Representation & Introduction to C (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L09 Introduction to MIPS : Data Transfer and Decisions (1) Garcia, Spring 2007 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L04 C Structures, Memory Management (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L03 Introduction to C (pt 1) (1) Garcia, Fall 2014 © UCB Senior Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Binary Arithmetic Math For Computers.
Lecture 2: Number Representation
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
CENG 311 Machine Representation/Numbers
1 COMP 2130 Introduction to Computer Systems Computing Science Thompson Rivers University.
High-Level Programming Languages: C++
Basics of Java IMPORTANT: Read Chap 1-6 of How to think like a… Lecture 3.
Netprog: Java Intro1 Crash Course in Java. Netprog: Java Intro2 Why Java? Network Programming in Java is very different than in C/C++ –much more language.
IT 251 Computer Organization and Architecture Introduction to the C Programming Language Part 1 Chia-Chi Teng.
Chapter 19 Number Systems. Irvine, Kip R. Assembly Language for Intel-Based Computers, Translating Languages English: Display the sum of A times.
These notes were originally developed for CpSc 210 (C version) by Dr. Mike Westall in the Department of Computer Science at Clemson.
Instructor: Justin Hsia 6/25/2013Summer Lecture #21 CS 61C: Great Ideas in Computer Architecture Introduction to C, Pointers.
CS61C L02 Number Representation (1) Garcia, Spring 2010 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C.
IT 252 Computer Organization and Architecture Introduction to the C Programming Language Richard Helps (developed from slides from C. Teng and textbook.
Topic 3: C Basics CSE 30: Computer Organization and Systems Programming Winter 2011 Prof. Ryan Kastner Dept. of Computer Science and Engineering University.
Cs641 pointers/numbers.1 Overview °Stack and the Heap °malloc() and free() °Pointers °numbers in binary.
1 IKI20210 Pengantar Organisasi Komputer Kuliah No. 23: Aritmatika 18 Desember 2002 Bobby Nazief Johny Moningka
Announcements Assignment 2 Out Today Quiz today - so I need to shut up at 4:25 1.
CS 61C: Great Ideas in Computer Architecture C Pointers Instructors: Vladimir Stojanovic & Nicholas Weaver 1.
The Machine Model Memory
IT 252 Computer Organization and Architecture
CS 61C: Great Ideas in Computer Architecture Introduction to C
March, 2006 Saeid Nooshabadi
March 2006 Saeid Nooshabadi
C Basics.
Instructor Paul Pearce
Presentation transcript:

CS61C L03 Introduction to C (pt 1) (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 3 – Introduction to the C Programming Language Ant jaw power  Cal researchers found the trap-jaw ant has the “fastest self-powered predatory strike in the animal kingdom”. Must-see ant videos!!

CS61C L03 Introduction to C (pt 1) (2) Garcia, Fall 2006 © UCB Two’s comp. shortcut: Sign extension Convert 2’s complement number rep. using n bits to more than n bits Simply replicate the most significant bit (sign bit) of smaller to fill new bits 2’s comp. positive number has infinite 0s 2’s comp. negative number has infinite 1s Binary representation hides leading bits; sign extension restores some of them 16-bit -4 ten to 32-bit: two two

CS61C L03 Introduction to C (pt 1) (3) Garcia, Fall 2006 © UCB What if too big? Binary bit patterns above are simply representatives of numbers. Strictly speaking they are called “numerals”. Numbers really have an  number of digits with almost all being same (00…0 or 11…1) except for a few of the rightmost digits Just don’t normally show leading digits If result of add (or -, *, / ) cannot be represented by these rightmost HW bits, overflow is said to have occurred unsigned

CS61C L03 Introduction to C (pt 1) (4) Garcia, Fall 2006 © UCB Review We represent “things” in computers as particular bit patterns: N bits  2 N Decimal for human calculations, binary for computers, hex to write binary more easily 1’s complement - mostly abandoned 2’s complement universal in computing: cannot avoid, so learn Overflow: numbers  ; computers finite, errors!

CS61C L03 Introduction to C (pt 1) (5) Garcia, Fall 2006 © UCB Introduction to C

CS61C L03 Introduction to C (pt 1) (6) Garcia, Fall 2006 © UCB Has there been an update to ANSI C? Yes! It’s called the “C99” or “C9x” std Thanks to Jason Spence for the tip References Highlights : convert integer types (#38) for boolean logic def’s (#35) restrict keyword for optimizations (#30) Named initializers (#17) for aggregate objs

CS61C L03 Introduction to C (pt 1) (7) Garcia, Fall 2006 © UCB Disclaimer Important: You will not learn how to fully code in C in these lectures! You’ll still need your C reference for this course. K&R is a must-have reference  Check online for more sources “JAVA in a Nutshell,” O’Reilly.  Chapter 2, “How Java Differs from C” Brian Harvey’s course notes  On class website

CS61C L03 Introduction to C (pt 1) (8) Garcia, Fall 2006 © UCB Compilation : Overview C compilers take C and convert it into an architecture specific machine code (string of 1s and 0s). Unlike Java which converts to architecture independent bytecode. Unlike most Scheme environments which interpret the code. These differ mainly in when your program is converted to machine instructions. For C, generally a 2 part process of compiling.c files to.o files, then linking the.o files into executables

CS61C L03 Introduction to C (pt 1) (9) Garcia, Fall 2006 © UCB Compilation : Advantages Great run-time performance: generally much faster than Scheme or Java for comparable code (because it optimizes for a given architecture) OK compilation time: enhancements in compilation procedure ( Makefile s) allow only modified files to be recompiled

CS61C L03 Introduction to C (pt 1) (10) Garcia, Fall 2006 © UCB Compilation : Disadvantages All compiled files (including the executable) are architecture specific, depending on both the CPU type and the operating system. Executable must be rebuilt on each new system. Called “porting your code” to a new architecture. The “change  compile  run [repeat]” iteration cycle is slow

CS61C L03 Introduction to C (pt 1) (11) Garcia, Fall 2006 © UCB C vs. Java™ Overview (1/2) Java Object-oriented (OOP) “Methods” Class libraries of data structures Automatic memory management C No built-in object abstraction. Data separate from methods. “Functions” C libraries are lower-level Manual memory management Pointers

CS61C L03 Introduction to C (pt 1) (12) Garcia, Fall 2006 © UCB C vs. Java™ Overview (2/2) Java High memory overhead from class libraries Relatively Slow Arrays initialize to zero Syntax: /* comment */ // comment System.out.print C Low memory overhead Relatively Fast Arrays initialize to garbage Syntax: * /* comment */ printf *Newer C compilers allow Java style comments as well!

CS61C L03 Introduction to C (pt 1) (13) Garcia, Fall 2006 © UCB C Syntax: Variable Declarations Very similar to Java, but with a few minor but important differences All variable declarations must go before they are used (at the beginning of the block). A variable may be initialized in its declaration. Examples of declarations: correct : { int a = 0, b = 10;... Incorrect:* for (int i = 0; i < 10; i++) *C compilers now allow this in the case of “for” loops.

CS61C L03 Introduction to C (pt 1) (14) Garcia, Fall 2006 © UCB C Syntax: True or False? What evaluates to FALSE in C? 0 (integer) NULL (pointer: more on this later) no such thing as a Boolean* What evaluates to TRUE in C? everything else… (same idea as in scheme: only #f is false, everything else is true!) *Boolean types provided by C99’s stdbool.h

CS61C L03 Introduction to C (pt 1) (15) Garcia, Fall 2006 © UCB C syntax : flow control Within a function, remarkably close to Java constructs in methods (shows its legacy) in terms of flow control if-else switch while and for do-while

CS61C L03 Introduction to C (pt 1) (16) Garcia, Fall 2006 © UCB C Syntax: main To get the main function to accept arguments, use this: int main (int argc, char *argv[]) What does this mean? argc will contain the number of strings on the command line (the executable counts as one, plus one for each argument).  Example: unix% sort myFile argv is a pointer to an array containing the arguments as strings (more on pointers later).

CS61C L03 Introduction to C (pt 1) (17) Garcia, Fall 2006 © UCB Administrivia Upcoming lectures C pointers and arrays in detail HW HW0 due in discussion next week HW1 due next 23:59 PST HW2 due following 23:59 PST Reading K&R Chapters 1-5 (lots, get started now!) First quiz due Sun CPS will start next wednesday I’ve heard you can sell your CPS back to store Monday is a holiday, don’t come here me Ki - Me - Gi - … mnemonics!

CS61C L03 Introduction to C (pt 1) (18) Garcia, Fall 2006 © UCB Address vs. Value Consider memory to be a single huge array: Each cell of the array has an address associated with it. Each cell also stores some value. Do you think they use signed or unsigned numbers? Negative address?! Don’t confuse the address referring to a memory location with the value stored in that location

CS61C L03 Introduction to C (pt 1) (19) Garcia, Fall 2006 © UCB Pointers An address refers to a particular memory location. In other words, it points to a memory location. Pointer: A variable that contains the address of a variable x y Location (address) name p 104

CS61C L03 Introduction to C (pt 1) (20) Garcia, Fall 2006 © UCB Pointers How to create a pointer: & operator: get address of a variable int *p, x; p?x? x = 3; p?x3 p =&x; px3 How get a value pointed to? * “dereference operator”: get value pointed to printf(“p points to %d\n”,*p); Note the “*” gets used 2 different ways in this example. In the declaration to indicate that p is going to be a pointer, and in the printf to get the value pointed to by p.

CS61C L03 Introduction to C (pt 1) (21) Garcia, Fall 2006 © UCB Pointers How to change a variable pointed to? Use dereference * operator on left of = px5 *p = 5 ; px3

CS61C L03 Introduction to C (pt 1) (22) Garcia, Fall 2006 © UCB Pointers and Parameter Passing Java and C pass parameters “by value” procedure/function/method gets a copy of the parameter, so changing the copy cannot change the original void addOne (int x) { x = x + 1; } int y = 3; addOne(y); y is still = 3

CS61C L03 Introduction to C (pt 1) (23) Garcia, Fall 2006 © UCB Pointers and Parameter Passing How to get a function to change a value? void addOne (int *p) { *p = *p + 1; } int y = 3; addOne(&y); y is now = 4

CS61C L03 Introduction to C (pt 1) (24) Garcia, Fall 2006 © UCB Pointers Pointers are used to point to any data type ( int, char, a struct, etc.). Normally a pointer can only point to one type ( int, char, a struct, etc.). void * is a type that can point to anything (generic pointer) Use sparingly to help avoid program bugs… and security issues… and a lot of other bad things!

CS61C L03 Introduction to C (pt 1) (25) Garcia, Fall 2006 © UCB Peer Instruction Question void main(); { int *p, x=5, y; // init y = *(p = &x) + 10; int z; flip-sign(p); printf("x=%d,y=%d,p=%d\n",x,y,p); } flip-sign(int *n){*n = -(*n)} How many errors? #Errors (1)0

CS61C L03 Introduction to C (pt 1) (26) Garcia, Fall 2006 © UCB Peer Instruction Answer void main(); { int *p, x=5, y; // init y = *(p = &x) + 10; int z; flip-sign(p); printf("x=%d,y=%d,p=%d\n",x,y,*p); } flip-sign(int *n){*n = -(*n);} How many errors? I get 7. #Errors (1)0

CS61C L03 Introduction to C (pt 1) (27) Garcia, Fall 2006 © UCB And in conclusion… All declarations go at the beginning of each function. Only 0 and NULL evaluate to FALSE. All data is in memory. Each memory location has an address to use to refer to it and a value stored in it. A pointer is a C version of the address. * “follows” a pointer to its value & gets the address of a value

CS61C L03 Introduction to C (pt 1) (28) Garcia, Fall 2006 © UCB

CS61C L03 Introduction to C (pt 1) (29) Garcia, Fall 2006 © UCB Administrivia : Lab priority Rank order of seating priority 1.61c registered for that section 2.61c registered for another section 3.61c waitlisted for that section 4.61c waitlisted for another section 5.Concurrent enrollment If low on list for busy section, think of moving to the early or late sections (usually more empty seats)

CS61C L03 Introduction to C (pt 1) (30) Garcia, Fall 2006 © UCB Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta Kilted Meghans giggle terribly petting exalted zellous yodas [CL] Kissing me gives terrible peeps exactly zero, yo! [CL] Killer Megan gives Terrible Peter's excellent zebra yoghurt [YC] “Kiss me”, giant Terrible Peter exclaimed zealously, yo [YC] Kind Merchants Give Texan People Extra Zesty Yogurt [AW] Kittens' Meows Give to Terrific Peals of Extraordinarily Zealous Yowls [AW] Killer Mercenary Giants Temporarily Pester Exercising Zebras in Yorkshire [AW] Kiss me girl, terrible people examine zebras, yo. [JD] Kiss me, given ten pens extracted zen-like yo [AG] KIssing ME GIrl, TElls of my PEnchant for EXtra ZEsty Yoghurt [TM] Kissing me gingerly, Ted Peterson exclaimed, "Zesty, yo!” [DH] Kiss me girl teach petty exasperations zestful yodeling [AR] Kind Megan Gibson teaches people extremely zestful yoga [AC] Kissing mediocre girls/gimmicks teaches/tells people to expect zero/zest from you [MT] Kiss me, giant tease, people excuse zealous young [CR] Kicking mean girls and teasing pedestrians excite zealous youngsters [MH] Killin' me! Giant teacher's pet exaggerates zealously yo [KN] Kind Merlin gives tense people exceptional zebra yogurt [KL] Kinky metaphysics gibberish teaches people exquisite Zen yodeling [JC] Kingly men giving tedious penance exhibit zealous yowls [MH] Kinky mean girls terrorizing petty ex-boyfriends zeroing-on you [HC] Kind Merlin Gives Ten People Extremeley Zealous Yodas [RC] Kiss Me Goat Te Procure Extra Zloties, Yo [RG]

CS61C L03 Introduction to C (pt 1) (31) Garcia, Fall 2006 © UCB Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta 1. King Mega gives Teddy pets, except zebra, yo [HL] 2. Kim’s melodious giddiness terrifies people, excepting zealous yodelers [DW] 3. Kirby Messed Gigglypuff Terribly, (then) Perfectly Exterminated Zelda and Yoshi [CB] 4. Killed meat gives teeth peace except zebra yogurt [CR] 5. Kind Men Give Tense People Extra Zeal (for) Yoga [VK/DG] 6. Killing melee gives terror; peace exhibits Zen yoga [CR] 7. Killing messengers gives terrible people exactly zero, yo [CL] 8. Kindergarten means giving teachers perfect examples (of) zeal (&) youth 9. Kissing mediocre girls teaches people (to) expect zero (from) you [MT] 10. Kinky Mean Girls Teach Penis-Extending Zen Yoga [AW] 11. Kissing Mel Gibson, Teddy Pendergrass exclaimed, “Zesty, yo!” [DH / AC/DG]

CS61C L03 Introduction to C (pt 1) (32) Garcia, Fall 2006 © UCB Administrivia : You have a question? Do not Dan (& expect response) Hundreds of s in inbox doesn’t scale to classes with 120+ students! Tips on getting an answer to your question: Ask a classmate Ask Dan after or before lecture The newsgroup, ucb.class.cs61c  Read it : Has your Q been answered already?  If not, ask it and check back Ask TA in section, lab or OH Ask Dan in OH Ask Dan in lecture (if relevant to lecture) Send your TA Send your Head TAs Send Dan