Precision measurement with ultracold atoms and molecules Jun Ye JILA, National Institute of Standards and Technology and Department of Physics, University.

Slides:



Advertisements
Similar presentations
High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
Advertisements

Optical clocks, present and future fundamental physics tests
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
1 Measurement of the Gravitational Time Delay Using Drag-Free Spacecraft and an Optical Clock Neil Ashby, Dept. of Physics, UCB 390, University of Colorado,
In Search of the “Absolute” Optical Phase
Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., J. Mauricio López R.
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Single-atom Optical Clocks— and Fundamental Constants Hg+ clock Brent Young Rob Rafac Sebastien Bize Windell Oskay Luca Lorini Anders Brusch Sarah Bickman.
PRECISION CAVITY ENHANCED VELOCITY MODULATION SPECTROSCOPY Andrew A. Mills, Brian M. Siller, Benjamin J. McCall University of Illinois, Department of Chemistry.
Heidelberg, 15 October 2005, Björn Hessmo, Laser-based precision spectroscopy and the optical frequency comb technique 1.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April.
Dylan Yost, Arman Cingoz, Tom Allison and Jun Ye JILA, University of Colorado Boulder Collaboration with Axel Ruehl, Ingmar Hartl and Martin Fermann IMRA.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Lecture 2 Searching for variation of fundamental constants Les Houches, 25 Sept E.A. Hinds Centre for Cold Matter Imperial College London.
Generation of short pulses
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Spectroscopy with comb-referenced diode lasers
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Determination of fundamental constants using laser cooled molecular ions.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Tunable Mid-IR Frequency Comb for Molecular Spectroscopy
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
NIST-F1 Cesium Fountain Atomic Clock The Primary Time and Frequency Standard for the United States f = 9,192,631,770.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Progress Towards Formation and Spectroscopy of Ultracold Ground-state Rb 2 Molecules in an Optical Trap H.K. Pechkis, M. Bellos, J. RayMajumder, R. Carollo,
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space Peter L. Bender JILA, University of Colorado Boulder.
High resolution spectroscopy with a femtosecond laser frequency comb
-Andrew Ludlow -Martin Boyd -Gretchen Campbell -Sebastian Blatt -Jan Thomsen - Matt Swallows -Travis Nicholson The Sr team: Group leader: Jun Ye New approaches:
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
Cavity-Enhanced Direct Frequency Comb Velocity Modulation Spectroscopy Laura Sinclair William Ames, Tyler Coffey, Kevin Cossel Jun Ye and Eric Cornell.
Direct Comb Spectroscopy of Buffer-Gas Cooled Molecules Ben Spaun ISMS, 2015 JILA, NIST and University of Colorado at Boulder.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
1 Frekvenčni standard in merjenje z optičnim glavnikom.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Measurement Science Science et étalons
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Making cold molecules from cold atoms
Precision Control Optical Pulse Train
Presentation transcript:

Precision measurement with ultracold atoms and molecules Jun Ye JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado at Boulder $ Funding $ NIST, NASA, ONR, NSF, AFOSR, DOE NASA Fundamental Physics Research in Space Airlie, May 23, 2006

Exciting time for light control Continuous wave laser: < 1 Hz stability and accuracy Ultrafast pulse: < 1 fs generation and control Figure of merit: Phase coherence after optical cycles

ICOLS 2005 Hawaii,2001 Learn from Giants Hall and Hänsch: Nobel Prize 2005

Frequency comb: state-of-the-art n = n f r  – f o Optical Synthesizer I( ) frfr f0f0 1/ f r =   o  +  oo Waveform control f r uniformity < Absolute inaccuracy < Short term instabilities ~ 10 1s Comb linewidth ~ 0.3 Hz  < rad, timing jitter < 1 fs Ye & Cundiff, Eds., “Comb” book, Springer (2005). Udem, Holzworth, & Hänsch, Nature 416, 233 (2002). Visible Frequency (Hz) Freq. comb 10 6 :1 Reduction Gear

Comparison of Hz-linewidth lasers across the visible spectrum Laser nm Cavity 2 Laser nm Cavity 1 Laser 1 Laser 2 Femto comb 30 m noise-cancelled fiber 35 m noise-cancelled fiber Ludlow et al., PRL 96, (2006). Beat width: 3 Hz 20 Hz 5 Hz 4/11/ 2006

Oscillator Counter  a Atoms New era for optical atomic clocks Diddams et al., Science 293, 825 (2001). Ye et al, Phys. Rev. Lett. 87, (2001). Feedback (accuracy) Ultrastable laser optical comb optical frequency synthesizer & counter RF or optical readout

T ~ 0.5 photon recoil ~ 220 nK Cool Alkaline Earth – Strontium 689 nm 1S01S0 3P23P2 3P13P1 3P03P0 698 nm 88 Sr 1 S P kHz7x < 10mHz~ Sr 1 S P 0 δ / at 1s Γ/2π 00 00 Xu et al., Phys. Rev. Lett. 90, (2003). Loftus et al., Phys. Rev. Lett. 93, (2004). Ido et al., Phys. Rev. Lett. 94, (2005). Santra et al., Phys. Rev. Lett. 94, (2005). Ludlow et al., Phys. Rev. Lett. 96, (2006). Zelevinsky et al., Phys. Rev. Lett. 96, (2006).

Spectroscopy at the magic wavelength 1S01S0 3P03P0 1-D Lamb-Dicke Regime η = kx 0 = (  recoil /  z ) 0.5 ~ 0.23  trap Red sideband Blue SB Carrier

1S01S0 3P03P0 Optical probe AC Stark shift of the lattice potential at magic

Absolute Frequency of 87 Sr 1 S 0 – 3 P 0 March 2, 2006 FWHM 15 Hz Ludlow et al., Phys. Rev. Lett. 96, (2006). Accuracy soon reaching 1 x April, 2006 Q ~ 1 x Projected stability < 1 x at 1 s

Ultracold molecules via Photoassociation * Narrow linewidth resolves the last few bound states → Determination of long-range potentials and atomic properties * Dipole – dipole interaction similar to Van der Waals * Optically control cold collisions with low atom loss (5s 2 ) 1 S nm,  = 7.6 kHz 3P13P1 (5s5p)

Observed Molecular Lines Dips correspond to trap loss when the PA laser is resonant to make excited Sr 2 molecules Zelevinsky et al., Phys. Rev. Lett. 96, (2006).

Cold molecules to test time-variation of electron/proton mass ratio Pump Probe Vibration ~ m e /m p Electronic ~  Sr 2 pump probe  ( pump – probe ) < 0.5 Hz

Cold OH molecules to constrain  Hyperfine interactions  ~  4 Lambda doubling  ~   3/2 F’= 2 F’= 1 F= 2 F= 1 Multiple transitions from the same gas cloud (different dependences on  ) (Self check on systematics) Current uncertainly in laboratory based experiments is 100 Hz, leading to  ~ ter Meulen & Dymanus, Astrophys. J. 172, L21(1972). OH megamasers High redshift z > 1 Darling, Phys. Rev. Lett 91, (2003). Chengalur et al., Phys. Rev. Lett. 91, (2003). Kanekar et al., Phys. Rev. Lett. 93, (2004).

p F net v Stark deceleration Second step: slow the molecules in to the rest frame of the lab + - p v Energy Position Conservative process, no cooling Phase space selection Phase space area linked to the deceleration angle (  0 ) Phase space rotation (constant density) Resembles a pendulum driven by a constant torque

Cold molecule based precision spectroscopy PMT Excitation laser Microwave Interrogation cavity Hexapole Decelerator Rabi or Ramsey interrogation on slowed OH beam High resolution and precision Systematic checks on beam (velocity) effects Detection can

Transition lineshape and center 1 kHz Rabi lineshape Highest resolution spectral feature (OH) Transition frequency determined < 5 Hz (20 x improvement) 200 m/s beam

Long term averaging Weighted standard mean error range Hudson et al., Phys. Rev. Lett. 96, (2006).

 /  measurement status  /  = 1 ppm (and better) is now possible to measure over ~10 Gyr. Linear drift model → /yr. Astrophysical measurements later this year plan better than 100 Hz accuracy. Deep surveys of OH megamasers are active from the local Universe to red shift z ~ 4. Optical clock comparisons ongoing, but test only modern epoch. e-

Special thanks Collaborators M. Notcutt, J. L. Hall, J. Bohn, S. Cundiff, C. Greene (JILA) P. Julienne, S. Diddams, J. Bergquist, L. Hollberg, T. Parker (NIST) C. Taatjes (Sandia), E. Arimondo (Pisa) Femtosecond comb & cold atoms S. Foreman M. Thorpe M. Stowe D. Hudson Dr. R. J. Jones Dr. K. Moll Dr. A. Peer Ultracold Sr M. Boyd A. Ludlow S. Blatt Dr. T. Zelevinsky Dr. T. Ido Dr. T. Zanon Cold Molecules E. Hudson B. Sawyer Dr. B. Lev