PANDA Collaboration Meeting Backward Endcap Calorimeter Geometry David Rodríguez Piñeiro GSI Darmstadt PANDA Collaboration Meeting GSI 05. 03. 2009.

Slides:



Advertisements
Similar presentations
Beam-plug and shielding studies related to HCAL and M2 Robert Paluch, Burkhard Schmidt November 25,
Advertisements

Devices for Indirect Vision
PANDA Mechanical Workshop Backward Endcap Calorimeter Geometry David Rodríguez Piñeiro GSI Darmstadt PANDA Mechanical Workshop GSI
EMMA Cavity Update Emma Wooldridge 27/02/07. Requirements Initial Design Cavity Options & Optimisation Available Designs Future Work.
QUINN TRUSS OPEN WEB JOIST SYSTEM TECHNICAL DETAILS.
Universidad Simón Bolívar ID Teacher: Magaly Rodríguez Properties and Shapes Jone Fitt Gildred Flores.
OLYMPUS Collaboration Meeting Luminosity Monitor Symmetric Möller/Bhabha Calorimeter David Rodríguez Piñeiro HIM / Mainz University OLYMPUS Collaboration.
OLYMPUS Collaboration Meeting Cooling Water David Rodríguez Piñeiro Mainz University OLYMPUS Collaboration Meeting DESY
GlueX Simulations Status Report on CD3 geometry Richard Jones GlueX Collaboration Meeting, Newport News, January 10-12, 2008.
R 3 B Gamma Calorimeter H. Alvarez Pol – R 3 B Gamma Calorimeter NUSTAR Calorimeter WG – Valencia 17/06/05 H. Alvarez Pol, D. Cortina, I. Durán GENP –
OLYMPUS Collaboration Meeting Luminosity Monitor Symmetric Möller/Bhabha Calorimeter David Rodríguez Piñeiro Mainz University OLYMPUS Collaboration Meeting.
7/3/2015 Geometry 1 Classifying Triangles Free powerpoints at
26 April 2013 Immanuel Gfall (HEPHY Vienna) Belle II SVD Overview.
1 Belle II IR 2 Shuji Tanaka KEK Joint Belle II & superB Background meeting 2012//Feb/ 8-9th 1.
News on PANDA ToF from ITEP (new mechanic design for DRPC based system) ITEP Russia-Panda meeting — April 26-28, 2010, ITEP(Moscow) Alexander Akindinov.
Hall D Design Status GlueX Collaboration Meeting JLab, Ravi Anumagalla.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
We have to fix the design of the flanges on the 1 st horn frame to which the target support beams are attached.
Maximum Areas in HPK Rule (ATLAS internal only) Y. Unno (KEK) 2015/1/13, 2015/4/8 updated, Y. Unno1.
Integration with LDC & Push-pull impact on LumiCal Wojciech Wierba Institute of Nuclear Physics PAN Cracow, Poland FCAL Workshop, LAL Orsay,
6- Calculation of shear stress at composite interface: A)Under service load: Strain and stress distributions across composite beam cross- section, under.
EMC simulation: effects of geometry options on energy resolution PID + EMC joint meeting LAL 27/11/2009 C. Cecchi - S. Germani* Università di PerugiaI.
FCC-hh HCAL software goals Ana Henriques (thanks for Clement Helsens, Carlos Solans input)
CGEM-IT project and beam test program G. Felici for the FE-LNF-TO team Partially supported by the Italian Ministry of Foreign Affairs under the Program.
IDS120j WITHOUT RESISTIVE MAGNETS MODIFYING Hg MODULE Nicholas Souchlas, PBL (11/1/2012) 1.
Forward Tagger Simulations Implementation in GEMC Moller Shield Tracking Studies R. De Vita INFN –Genova Forward Tagger Meeting, CLAS12 Workshop, June.
Calorimeters Design Issues and Simulation Needs C.Woody Physics Department Brookhaven National Lab EIC Simulation Workshop Oct 9, 2012.
PANDA Collaboration Meeting D. Rodríguez Piñeiro SciTil and Next Steps.
Simulation of heat load at JHF decay pipe and beam dump KEK Yoshinari Hayato.
Perimeter and Area with Circles. Circumference of a Circle Circumference is the perimeter of the circle Formula: or (for exact answers, leave π in your.
Sections Perimeter and Area with Circles.
Vacuum conditions in PANDA pbar-line Alexander Gruber, SMI, Vienna, Austria.
Page 1 GSI, Hydraulic Actuators for PANDA Target Spectrometer Jost Lühning, GSI Darmstadt Functional Specifications for moving the TS: Two synchronous.
G. GIRAUDO - D. ORECCHINI Beam-Target line for PANDA – GSI – 4 February 2013 Beam-Target line for PANDA – GSI – 4 February 2013 Central Trackers assembly.
Miscellaneous MEC Topics Mainz, CM September 2016, MEC Session J
“CENTRAL SUPPORT FRAME” -
STRAW TRACKER SYSTEM CAD STATUS :
Platform Design for the Target Spectrometer using Heavy-Weight Rollers J. Lühning, GSI Darmstadt, Three design goals for Platform: Low construction.
A study on Fatigue Strength for Tank Structures subject to
Stephan Aulenbacher MAGIX Collaboration Meeting
Target Spectrometer Updates CM-MEC Session Giessen, March 2015 J
Forward Tagger Simulations
- STT LAYOUT - SECTOR F SECTOR A SECTOR B SECTOR E SECTOR D SECTOR C
General remarks about the HESR and PANDA vacuum system
PANDA Yoke of the Magnet
STRAW TRACKER CLASH AND INTEGRATION ANALYSIS- INFN-LNF - SPAS
Layout of Detectors for CLIC
PANDA Mechanical Design
David Rodríguez Piñeiro GSI Darmstadt PANDA Collaboration Meeting Turin EMC BW Endcap.
Backward Calorimetry For SuperB
SVT Module design F.Bosi
Name That Angle Geometry Review.
LumiCal mechanical design, integration with LDC and laser alignment
Update on mechanical structure for the ENDCAP calorimeter
EMC BWE PANDA Insertion
(A) (B) - CENTRAL SUPPORT FRAME - INFN-LNF - SPAS 1
First of all we will remind some numbers:
Challenges for FCC-ee MDI mechanical design
An alternative forward endcap calorimeter design
Classifying Triangles
Triangle Inequalities
Final Design CGEM Workshop HIEP, 14/03/2017 M. Melchiorri - INFN FE.
OLYMPUS Collaboration Meeting Luminosity Monitor Calorimeter
Classifying Triangles
Water Strider Body Segment Dimensions Contact Perimeter (mm)
Classifying Triangles
Beam Halo Considerations for Back Angle Running
University of Warith AL-Anbiya’a
Classifying Triangles
Option 1: Reduced FF Quad Apertures
Presentation transcript:

PANDA Collaboration Meeting Backward Endcap Calorimeter Geometry David Rodríguez Piñeiro GSI Darmstadt PANDA Collaboration Meeting GSI

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting2 Backward Endcap EMC 1.– Requirements - Boundary Conditions - Dimensions 2.– Geometry - Distance to the target - Inner Radius - Beam Cone Angle - Wedge Hollow - Pipe flange 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting3 Backward Endcap EMC Distance Target-BW Endcap560 mm Maximum Outer Radius448 mm Minimum Inner Radius150 mm Boundary Conditions 1.– Requirements - Boundary Conditions - Dimensions 2.– Geometry 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting4 Backward Endcap EMC Crystals DimensionsStraight Geometry Length 200 mm Face 24,4x24,4 mm (barrel smallest back face crystal) Picture 1.– Requirements - Boundary Conditions - Dimensions 2.– Geometry 3.- Summary Dimensions Straight Geometry: 0,6284 str

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting5 Backward Endcap EMC 2.– Geometry

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting6 Backward Endcap EMC Distance from target to crystals 594 mm (560 mm free space) Limit angle of the barrel is 39º Minimum outer angle crystal BW endcap 32,246º There is a maximum gap of 6,754º So, we would need to shift the BW endcap forwards, leaving a free space of 428,75 mm Distance to the target (I) 1.– Requirements 2.– Geometry - Distance to the target (I) - Distance to the target (II) - Inner Radius - Beam Cone Angle - Wedge Hollow (I) - Wedge Hollow (II) - Pipe Flange 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting7 Backward Endcap EMC 30% closer to the target; crystals 554 (free distance 520 mm) Maximum angle outer crystal BW endcap 34,00º Distance to the target (II) 1.– Requirements 2.– Geometry - Distance to the target (I) - Distance to the target (II) - Inner Radius - Beam Cone Angle - Wedge Hollow (I) - Wedge Hollow (II) - Pipe Flange 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting8 Backward Endcap EMC Inner Radius 30% less free space (beam pipe-crystals) of Inner Radius, R128 mm 48 crystals gain 1.– Requirements 2.– Geometry - Distance to the target (I) - Distance to the target (II) - Inner Radius - Beam Cone Angle - Wedge Hollow (I) - Wedge Hollow (II) - Pipe Flange 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting9 Backward Endcap EMC Beam Cone Angle Angle trumpet: 15,85º > 15,08º (30% smaller) 1.– Requirements 2.– Geometry - Distance to the target (I) - Distance to the target (II) - Inner Radius - Beam Cone Angle - Wedge Hollow (I) - Wedge Hollow (II) - Pipe Flange 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting10 Backward Endcap EMC Wedge Hollow (I) Wedge hollow of 20º Two pieces 424 Crystals 108 less 1.– Requirements 2.– Geometry - Distance to the target (I) - Distance to the target (II) - Inner Radius - Beam Cone Angle - Wedge Hollow (I) - Wedge Hollow (II) - Pipe Flange 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting11 Backward Endcap EMC Wedge Hollow (II) 4-side cut 500 Crystals 2 alternatives, same free space: 2-side cut 448 Crystals 1.– Requirements 2.– Geometry - Distance to the target (I) - Distance to the target (II) - Inner Radius - Beam Cone Angle - Wedge Hollow (I) - Wedge Hollow (II) - Pipe Flange 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting12 Backward Endcap EMC Pipe Flange Flange upstream BW endcap Estimation: 1000 mm from the target 1.– Requirements 2.– Geometry - Distance to the target (I) - Distance to the target (II) - Inner Radius - Beam Cone Angle - Wedge Hollow (I) - Wedge Hollow (II) - Pipe Flange 3.- Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting13 Backward Endcap EMC 1.– Requirements 2.– Geometry 3.- Summary Distance target: from 560 to 520 mm Inner Radius:from 150 to 128 mm Angle trompet: 15,85º < 15,08º (30% smaller) Wedge: One piece, cutting either 2 or 4 sides Flange: At least 1000 mm from target Summary

05/03/2009David Rodríguez Piñeiro - GSI Darmstadt - Collaboration Meeting14 Backward Endcap EMC Personal Contact: Tel: +49 (0) / Thank you!