Michael Moll ( CERN – PH-DT2-SD)

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance at Extreme Hadron Fluence G. Lindström (a), E. Fretwurst (a), F. Hönniger.
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Michael Moll CERN - Geneva - Switzerland
LHC SPS PS. 46 m 22 m A Toroidal LHC ApparatuS - ATLAS As large as the CERN main bulding.
Vertex 2001 Brunnen, Switzerland Phil Allport Gianluigi Casse Ashley Greenall Salva Marti i Garcia Charge Collection Efficiency Studies with Irradiated.
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
Trakcing systems with Silicon with special reference to ATLAS-SCT Some generalities about tracking Special requirements in LHC environments About silicon.
Radiation Tolerant Sensors for Pixel Detectors Michael Moll CERN - Geneva - Switzerland PIXEL 2005 international workshop, September 5-8, Bonn, Germany.
Characterization of 150  m thick epitaxial silicon pad detectors from different producers after 24 GeV/c proton irradiation Herbert Hoedlmoser (1), Michael.
Wide Bandgap Semiconductor Detectors for Harsh Radiation Environments
RD50 Recent Results Development of radiation hard sensors for SLHC Anna Macchiolo* * Max-Planck-Institut für Physik on behalf of the RD50 Collaboration.
Radiation Tolerant Semiconductor Sensors for Tracking Detectors Michael Moll CERN- PH-DT2 - Geneva - Switzerland TIME05 – Workshop on Tracking In high.
Microstrip Detector R&D at Helsinki Institute of Physics J. Härkönen, E. Tuovinen, P. Luukka, E. Tuominen and J. Tuominiemi Helsinki Institute of Physics.
On MCz SCSI after 24 GeV/c proton irradiation 12th RD50 Workshop Ljubljana, 2-4 June 2008 D. Creanza On behalf of the Bari and Pisa RD50 groups.
Semiconductor detectors
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
RD50 - Radiation hard semiconductor devices for very high luminosity colliders Some experiences in forming, running and keeping alive an approved CERN.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
G. Casse, Novosibirsk, 28/02 5/ th International Conference Instr. Colliding Beam Physics 1 Overview of the recent activities of the RD50 collaboration.
Gunnar Lindstroem – University of HamburgHamburg workshop 24-Aug-061 Radiation Tolerance of Silicon Detectors The Challenge for Applications in Future.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
Michael Moll (CERN/PH) 3 rd MC-PAD Network Training Event, Jožef Stefan Institute, Ljubljana, Slovenia - 29 September Radiation Hardness of Semiconductor.
Study of leakage current and effective dopant concentration in irradiated epi-Si detectors I. Dolenc, V. Cindro, G. Kramberger, I. Mandić, M. Mikuž Jožef.
Radiation hard Si detectors Eduard Monakhov University of Oslo RD50 Collaboration Radiation hard semiconductor devices for very high luminosity colliders.
Development of semiconductor detectors for very harsh
Martin van Beuzekom, STD6 14 th September Outline: Introduction to LHCb and VErtex LOcator (VELO) Status of VELO Beamtests Upgrades Summary LHCb.
M. Bruzzi et al. Thermal donors in MCz Si, Trento Meeting Rd50 February 28, 2005 Mara Bruzzi, D. Menichelli, M. Scaringella INFN Florence, University of.
M. Bruzzi, the issue of p-type disuniformity, 7° RD50 Workshop, CERN, November 14-16, 2005 The issue of doping disuniformity in p-type MCz Si sensors M.
D. Menichelli, RD50, Hamburg, august TSC, DLTS and transient analysis in MCz silicon Detectors at different process temperature, irradiation.
Michael Moll (CERN/PH) on behalf of the RD50 collaboration 11 th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors.
Silicon detector processing and technology: Part II
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich 11th RD50 Workshop CERN Nov Thin planar pixel detectors for highest radiation levels.
Jean-Marie Brom (IPHC) – 1 DETECTOR TECHNOLOGIES Lecture 3: Semi-conductors - Generalities - Material and types - Evolution.
RD50 STATUS REPORT 2006 Development of radiation hard sensors for very high luminosity colliders Mara Bruzzi 1 and Michael Moll 2 1 INFN Florence, Italy.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
G. Steinbrück, University of Hamburg, SLHC Workshop, Perugia, 3-4 April Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance.
Joachim Erfle Summary of measurements after first irradiation of HPK samples 19 th RD50 Workshop November 2011 CERN Joachim.
RD50 Michael Moll – PH-TA1-SDMeeting February 25, Three R&D strategies:  Material engineering - Defect engineering of silicon (oxygenation, dimers,
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
Regina Demina, Hadron collider workshop, FNAL, October 16-18, SLHC tracking issues Regina Demina, University of Rochester International Workshop.
Simulations of Hadron Irradiation Effects for Si Sensors Using Effective Bulk Damage Model A. Bhardwaj 1, H. Neugebauer 2, R. Dalal 1, M. Moll 2, Geetika.
June ‘09 RD50 Meeting Freiburg Hartmut Sadrozinski, SCIPP, UC Santa Cruz 1 Charge Collection in irradiated Si Sensors C. Betancourt, B. Colby, N. Dawson,
SMART Study of radiation damage induced by 24GeV/c and 26MeV protons on heavily irradiated MCz and FZ silicon detectors V. Radicci Dipartimento Interateneo.
Jaakko Härkönen, 6th "Hiroshima" Symposium, Carmel, California, September Magnetic Czochralski silicon as detector material J. Härkönen, E. Tuovinen,
The LHCb Vertex Locator Lars Eklund LHCb VELO Group of the LHCb Collaboration CERN (Geneva), EPFL (Lausanne), NIKHEF (Amsterdam), University of Glasgow,
CNM double-sided 3D strip detectors before and after neutron irradiation Celeste Fleta, Richard Bates, Chris Parkes, David Pennicard, Lars Eklund (University.
Michael Moll (CERN/PH)  Silicon Tracking Detectors at LHC  Motivation to study radiation hardness  Radiation Damage in Silicon Detectors  Approaches.
Charge Collection, Power, and Annealing Behaviour of Planar Silicon Detectors after Reactor Neutron, Pion and Proton Doses up to 1.6×10 16 n eq cm -2 A.
Development of Radiation hard semiconductor devices for very high luminosity colliders Mara Bruzzi 1 and Michael Moll 2 1 INFN Florence, Italy 2 CERN-
Charge Multiplication Properties in Highly Irradiated Thin Epitaxial Silicon Diodes Jörn Lange, Julian Becker, Eckhart Fretwurst, Robert Klanner, Gunnar.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
G. Casse, ATLAS tracker upgrade, Genova, July Middle/Outer Radii: R&D plan in Europe G. Casse, University of Liverpool.
Investigation of the effects of thickness, pitch and manufacturer on charge multiplication properties of highly irradiated n-in-p FZ silicon strips A.
Otilia Militaru Université catholique de Louvain, Belgium
Michael Moll (CERN-PH-DT2)
Study of radiation damage induced by 26MeV protons and reactor neutrons on heavily irradiated MCz, FZ and Epi silicon detectors N. Manna Dipartimento.
Study of radiation damage induced by 24/c GeV and 26MeV protons on heavily irradiated MCz and FZ silicon detectors N. Manna Dipartimento Interateneo di.
The UHH Detector Laboratory
TCAD Simulations of Silicon Detectors operating at High Fluences D
Simulation of signal in irradiated silicon detectors
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
Presentation transcript:

Michael Moll ( CERN – PH-DT2-SD) CERN – PH-DT2 – Scientific Tea meeting 13.10.2006 Radiation Tolerant Silicon Detectors Michael Moll ( CERN – PH-DT2-SD) Outline What is a silicon detector? – How does it work? What is radiation damage? – What are the problems? Radiation damage in future experiments: Super-LHC + (LHCb Upgrade) The CERN RD50 collaboration Strategies to obtain more radiation tolerant detectors Some examples how to obtain radiation tolerant detectors Material Engineering Device Engineering Summary Bonjour tout le monde. Premièrement j'aime vous remercier de l'invitation. Deuxièmement j'aime dire que je suis désolé pour mon Français Si vous pensez à un moment qui mon Français est trop mauvais, je m'arrêterai et continuerai en anglais. Cependant, je voudrais vraiment essayer de donner cette présentation en français Alors je commence: Aujourd'hui je voudrais parler au sujet du développement des détecteurs de semi-conducteur pour le futurs générations de collisionneurs avec de très haute luminosité ….et en particulier au sujet des développements pour le remise a niveau (upgrade) du LHC (le Grand Collisionneur Hadronique), le Super LHC. ..la plus grande partie des développements que je vais présenter .. ont été effectuées par la collaboration CERN-RD50

Silicon Detector – Working principle Take a piece of high resistivity silicon and produce two electrodes (not so easy !) Apply a voltage in order to create an internal electric field (some hundred volts over the 0.3mm thick device) Traversing charged particles will produce electron-hole pairs The moving electrons and holes will create a signal in the electric cicuit Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -2 / 20-

Silicon Strip Detector Segmentation of the p+ layer into strips (Diode Strip Detector) and connection of strips to individual read-out channels gives spatial information pitch typical thickness: 300mm (150m - 500m used) using n-type silicon with a resistivity of  = 2 KWcm (ND ~2.2.1012cm-3) results in a depletion voltage ~ 150 V Resolution  depends on the pitch p (distance from strip to strip) - e.g. detection of charge in binary way (threshold discrimination) and using center of strip as measured coordinate results in: typical pitch values are 20 mm– 150 mm  50 mm pitch results in 14.4 mm resolution Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -3 / 20-

Example – The ATLAS module Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -4 / 20-

LHCb – VELO: Silicon sensor details R-measuring sensor (45 degree circular segments) 300 mm thick sensors n-on-n, DOFZ wafers 42 mm radius AC coupled, double metal 2048 strips / sensor Pitch from 40 to 100 mm Produced by Micron Semiconductor 42 mm 8 mm F-measuring sensor (radial strips with a stereo angle) [Martin van Beuzekom, STD6, September 2006] Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -5 / 20-

LHCb-VELO - Module construction Beetle 4 layer kapton circuit Heat transport with TPG Readout with 16 Beetle chips 128 channels, 25 ns shaping time, analog pipeline 0.25 mm CMOS no performance loss up to 40 Mrad Yield > 80 % Kapton hybrid Carbon fibre Thermal Pyrolytic Graphite (TPG) [Martin van Beuzekom, STD6, September 2006] Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -6 / 20-

Motivation for R&D on Radiation Tolerant Detectors: Super - LHC LHC upgrade LHC (2007), L = 1034cm-2s-1 f(r=4cm) ~ 3·1015cm-2 Super-LHC (2015 ?), L = 1035cm-2s-1 f(r=4cm) ~ 1.6·1016cm-2 LHC (Replacement of components) e.g. - LHCb Velo detectors (~2010) - ATLAS Pixel B-layer (~2012) Linear collider experiments (generic R&D) Deep understanding of radiation damage will be fruitful for linear collider experiments where high doses of e, g will play a significant role. 10 years 500 fb-1  5 5 years 2500 fb-1 Quelle est notre motivation? Nous avons trois raisons principales d'étudier les dommages du rayonnement et des détecteurs résistant au rayonnement 1. La première raison et le Super-LHC Si vous regardez les champs de rayonnement dans les expériences ATLAS et CMS du Grand Collisionneur Hadronique (LHC) vous trouvez déjà des niveaux de rayonnement très élevés. Par exemple, après 10 ans d'opération ils auront intégrés environ : 3 dix à la 15 (3 dix a la puissance 15 – 3 a la 15) particules par centimètres carrés à une distance de 4 centimètres du point d'interaction. Ceci correspond à la position de la couche intérieure des détecteurs a Pixel. Même si on regarde le niveau du rayonnement a un point plus extérieur, par exemple à 75 cm de distance du point d’interaction on trouve un très grand nombre du particules rapides après 10 ans d’opération. Aujourd'hui, nous sommes heureux que la technologie pour utiliser des détecteurs dans un tel environnement existe - les détecteurs survivront - mais ils souffriront fortement des dommages du rayonnement….. Pour le Super-LHC il est prévu d’augmenter la luminosité par un facteur dix; Après cinq ans d'opération du Super LHC, on aura un facteur cinq fois plus élevés de rayonnement comparés au LHC -- c'est un niveau de rayonnement pour lequel aucune technologie n'existe a ce jour -- pour les composants plus éloigné du point d'interaction on aura un problème - la technologie existe ; on pourrait employer par exemple des détecteurs Pixel a la place des détecteurs a micro piste. Cependant, ça serait beaucoup trop cher. donc nous avons besoin de détecteurs a bas prix qui sont résistant aux rayonnements 2. la deuxième raison est le LHC dans les expériences du LHC sont déjà employés, des détecteurs contenant des niveaux élevés d’oxygène. Ils sont plus résistant contre le rayonnement, leurs résistances ont déjà été démontré; mais ils ont besoin d'une caractérisation plus approfondie; on a prévu de changer une partie des détecteur après quelques années .(par exemple: le LHC-b Velo détecteur) 3. La troisième raison est la recherche pour les expériences de futurs collisionneurs linéaires où les détecteurs vont souffrir du rayonnement électromagnétique; Si on comprend les mécanismes du dommage du rayonnement électromagnétique, c’est déjà une première étape dans la compréhension des dommages du rayonnement hadronique qui sont beaucoup plus complexe. Plus tard je vais vous prouver que le silicium avec un concentration en oxygène très élevée est un très bon matériel pour ce type d’environnement Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -7 / 20-

Overview: Radiation Damage in Silicon Sensors Two general types of radiation damage to the detector materials:  Bulk (Crystal) damage due to Non Ionizing Energy Loss (NIEL) - displacement damage, built up of crystal defects – Change of effective doping concentration (higher depletion voltage, under- depletion) Increase of leakage current (increase of shot noise, thermal runaway) Increase of charge carrier trapping (loss of charge)  Surface damage due to Ionizing Energy Loss (IEL) - accumulation of positive in the oxide (SiO2) and the Si/SiO2 interface – affects: interstrip capacitance (noise factor), breakdown behavior, … Impact on detector performance and Charge Collection Efficiency (depending on detector type and geometry and readout electronics!) Signal/noise ratio is the quantity to watch  Sensors can fail from radiation damage ! efficacité de collection de charge influencé par deux mécanisme piégeage – porteurs de charge sont pièges par les défaut profond déficit de collection de charge augmente en fonction de la fluence Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -8 / 20-

noise The charge signal Most probable charge ≈ 0.7 mean Mean charge Collected Charge for a Minimum Ionizing Particle (MIP) Mean energy loss dE/dx (Si) = 3.88 MeV/cm  116 keV for 300m thickness Most probable energy loss ≈ 0.7 mean  81 keV 3.6 eV to create an e-h pair  72 e-h / m (mean)  108 e-h / m (most probable) Most probable charge (300 m) ≈ 22500 e ≈ 3.6 fC Mean charge Most probable charge ≈ 0.7 mean Cut (threshold) efficacité de collection de charge influencé par deux mécanisme piégeage – porteurs de charge sont pièges par les défaut profond déficit de collection de charge augmente en fonction de la fluence noise Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -9 / 20-

What is signal and what is noise? Signal to Noise ratio Landau distribution has a low energy tail - becomes even lower by noise broadening Noise sources: (ENC = Equivalent Noise Charge) - Capacitance - Leakage Current - Thermal Noise (bias resistor) What is signal and what is noise? less signal more noise efficacité de collection de charge influencé par deux mécanisme piégeage – porteurs de charge sont pièges par les défaut profond déficit de collection de charge augmente en fonction de la fluence Good hits selected by requiring NADC > noise tail If cut too high  efficiency loss If cut too low  noise occupancy Figure of Merit: Signal-to-Noise Ratio S/N Typical values >10-15, people get nervous below 10. Radiation damage severely degrades the S/N. Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -10 / 20-

The CERN RD50 Collaboration http://www.cern.ch/rd50 RD50: Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders Collaboration formed in November 2001 Experiment approved as RD50 by CERN in June 2002 Main objective: Development of ultra-radiation hard semiconductor detectors for the luminosity upgrade of the LHC to 1035 cm-2s-1 (“Super-LHC”). Challenges: - Radiation hardness up to 1016 cm-2 required - Fast signal collection (Going from 25ns to 10 ns bunch crossing ?) - Low mass (reducing multiple scattering close to interaction point) - Cost effectiveness (big surfaces have to be covered with detectors!) Presently 261 members from 52 institutes Belarus (Minsk), Belgium (Louvain), Canada (Montreal), Czech Republic (Prague (3x)), Finland (Helsinki, Lappeenranta), Germany (Berlin, Dortmund, Erfurt, Freiburg, Hamburg, Karlsruhe), Israel (Tel Aviv), Italy (Bari, Bologna, Florence, Padova, Perugia, Pisa, Trento, Turin), Lithuania (Vilnius), The Netherlands (Amsterdam), Norway (Oslo (2x)), Poland (Warsaw (2x)), Romania (Bucharest (2x)), Russia (Moscow), St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Exeter, Glasgow, Lancaster, Liverpool, Sheffield, University of Surrey), USA (Fermilab, Purdue University, Rochester University, SCIPP Santa Cruz, Syracuse University, BNL, University of New Mexico) Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -11 / 20-

Approaches to develop radiation harder solid state tracking detectors Defect Engineering of Silicon Deliberate incorporation of impurities or defects into the silicon bulk to improve radiation tolerance of detectors Needs: Profound understanding of radiation damage microscopic defects, macroscopic parameters dependence on particle type and energy defect formation kinetics and annealing Examples: Oxygen rich Silicon (DOFZ, Cz, MCZ, EPI) Oxygen dimer & hydrogen enriched Si Pre-irradiated Si Influence of processing technology New Materials Silicon Carbide (SiC), Gallium Nitride (GaN) Diamond (CERN RD42 Collaboration) Amorphous silicon Device Engineering (New Detector Designs) p-type silicon detectors (n-in-p) thin detectors, epitaxial detectors 3D detectors and Semi 3D detectors, Stripixels Cost effective detectors Monolithic devices Scientific strategies: Material engineering Device engineering Change of detector operational conditions CERN-RD39 “Cryogenic Tracking Detectors” operation at 100-200K to reduce charge loss Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -12 / 20-

Silicon Materials under Investigation by RD50 Symbol  (cm) [Oi] (cm-3) Standard FZ (n- and p-type) FZ 1–710 3 < 51016 Diffusion oxygenated FZ (n- and p-type) DOFZ ~ 1–21017 Magnetic Czochralski Si, Okmetic, Finland (n- and p-type) MCz ~ 110 3 ~ 51017 Czochralski Si, Sumitomo, Japan (n-type) Cz ~ 8-91017 Epitaxial layers on Cz-substrates, ITME, Poland (n- and p-type) EPI 50 - 100 < 11017 DOFZ silicon Enriched with oxygen on wafer level, inhomogeneous distribution of oxygen CZ silicon high Oi (oxygen) and O2i (oxygen dimer) concentration (homogeneous) formation of shallow Thermal Donors possible Epi silicon high Oi , O2i content due to out-diffusion from the CZ substrate (inhomogeneous) thin layers: high doping possible (low starting resistivity) Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -13 / 20-

Standard FZ, DOFZ, Cz and MCz Silicon 24 GeV/c proton irradiation Standard FZ silicon type inversion at ~ 21013 p/cm2 strong Neff increase at high fluence Oxygenated FZ (DOFZ) reduced Neff increase at high fluence CZ silicon and MCZ silicon no type inversion in the overall fluence range (verified by TCT measurements) (verified for CZ silicon by TCT measurements, preliminary result for MCZ silicon)  donor generation overcompensates acceptor generation in high fluence range Common to all materials (after hadron irradiation): reverse current increase increase of trapping (electrons and holes) within ~ 20% Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -14 / 20-

EPI Devices – Irradiation experiments Epitaxial silicon Layer thickness: 25, 50, 75 m (resistivity: ~ 50 cm); 150 m (resistivity: ~ 400 cm) Oxygen: [O]  91016cm-3; Oxygen dimers (detected via IO2-defect formation) G.Lindström et al.,10th European Symposium on Semiconductor Detectors, 12-16 June 2005 G.Kramberger et al., Hamburg RD50 Workshop, August 2006 105V (25mm) 230V (50mm) 320V (75mm) Only little change in depletion voltage No type inversion up to ~ 1016 p/cm2 and ~ 1016 n/cm2 high electric field will stay at front electrode! reverse annealing will decreases depletion voltage! Explanation: introduction of shallow donors is bigger than generation of deep acceptors CCE (Sr90 source, 25ns shaping):  6400 e (150 mm; 2x1015 n/cm-2)  3300 e (75mm; 8x1015 n/cm-2)  2300 e (50mm; 8x1015 n/cm-2) Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -15 / 20-

Device engineering p-in-n versus n-in-p detectors n-type silicon after high fluences: p-type silicon after high fluences: p+on-n n+on-p p-on-n silicon, under-depleted: Charge spread – degraded resolution Charge loss – reduced CCE n-on-p silicon, under-depleted: Limited loss in CCE Less degradation with under-depletion Collect electrons (fast) Be careful, this is a very schematic explanation, reality is more complex ! Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -16 / 20-

n-in-p microstrip detectors n-in-p: - no type inversion, high electric field stays on structured side - collection of electrons n-in-p microstrip detectors (280mm) on p-type FZ silicon Detectors read-out with 40MHz no reverse annealing visible in the CCE measurement ! e.g. for 7.5  1015 p/cm2 increase of Vdep from Vdep~ 2800V to Vdep > 12000V is expected ! CCE ~ 6500 e (30%) after 7.5 1015 p cm-2 at 900V Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -17 / 20-

Introduced by: S.I. Parker et al., NIMA 395 (1997) 328 3D detector - concepts Introduced by: S.I. Parker et al., NIMA 395 (1997) 328 “3D” electrodes: - narrow columns along detector thickness, - diameter: 10mm, distance: 50 - 100mm Lateral depletion: - lower depletion voltage needed - thicker detectors possible - fast signal - radiation hard ionizing particle carriers collected at the same time n-columns p-columns wafer surface n-type substrate Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -18 / 20-

3D detector - concepts Simplified 3D architecture Introduced by: S.I. Parker et al., NIMA 395 (1997) 328 “3D” electrodes: - narrow columns along detector thickness, - diameter: 10mm, distance: 50 - 100mm Lateral depletion: - lower depletion voltage needed - thicker detectors possible - fast signal - radiation hard n-columns p-columns wafer surface n-type substrate Simplified 3D architecture n+ columns in p-type substrate, p+ backplane operation similar to standard 3D detector Simplified process hole etching and doping only done once no wafer bonding technology needed Simulations performed Fabrication: IRST(Italy), CNM Barcelona metal strip hole [C. Piemonte et al., NIM A541 (2005) 441] hole Hole depth 120-150mm Hole diameter ~10mm C.Piemonte et al., STD06, September 2006 First CCE tests under way Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -19 / 20-

Further information: http://cern.ch/rd50/ Conclusion New Materials like SiC and GaN have been characterized (not shown in this talk) .   CCE tests show that these materials are not radiation harder than silicon  Silicon (operated at e.g. -30°C) seems presently to be the best choice At fluences up to 1015cm-2 (Outer layers of SLHC detector) the depletion voltage change and the large area to be covered is major problem: MCZ silicon detectors could be a cost-effective radiation hard solution p-type (FZ and MCZ) silicon microstrip detectors show good results: CCE  6500 e; Feq= 41015 cm-2, 300mm, collection of electrons, no reverse annealing observed in CCE measurement! At the fluence of 1016cm-2 (Innermost layer of a SLHC detector) the active thickness of any silicon material is significantly reduced due to trapping. New options: Thin/EPI detectors : drawback: radiation hard electronics for low signals needed e.g. 3300e at Feq 8x1015cm-2, 75mm EPI, …. thicker layers (150 mm presently under test) 3D detectors : drawback: very difficult technology ….. steady progress within RD50 Further information: http://cern.ch/rd50/ Michael Moll – PH-DT2 – Scientific Tea, 11 October 2006 -20 / 20-