Linear and Pump-Probe applications of THz Spectroscopy: The case of Elettra, Bessy-II, and SPARC S. Lupi Dipartimento di Fisica, INFN-University of Rome.

Slides:



Advertisements
Similar presentations
Femtosecond lasers István Robel
Advertisements

Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Interplay Between Electronic and Nuclear Motion in the Photodouble Ionization of H 2 T J Reddish, J Colgan, P Bolognesi, L Avaldi, M Gisselbrecht, M Lavollée,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
SPEAR3 short pulse development J. Safranek for the SSRL accelerator physics group* Outline: Timing mode fill patterns Short bunches –Low alpha Bunch length.
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Coherent Radiation from High-Current Electron Beams of a Linear Accelerator and Its Applications S. Okuda ISIR, Osaka Univ Research Institute.
Possibility of THz Light Generation by using SW/TW Hybrid Photoinjector 11/16-19, 2009, HBEB, Maui Atsushi Fukasawa, James Rosenzweig, David Schiller,
TeraHertz Kerr effect in GaP crystal
Generation of short pulses
Ultrafast Manipulation of the Magnetization J. Stöhr Sara Gamble and H. C. Siegmann, SLAC, Stanford A. Kashuba Bogolyubov Institute for Theoretical Physics,
Infrared and Raman study of the charge-density-wave state in the rare-earth polychalcogenides RTe n Leonardo Degiorgi Laboratorium für Festkörperphysik.
LCLS Studies of Laser Initiated Dynamics Jorgen Larsson, David Reis, Thomas Tschentscher, and Kelly Gaffney provided LUSI management with preliminary Specifications.
Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford ) Exploring Ultrafast Excitations in Solids with Pulsed e-Beams Joachim Stöhr and Hans Siegmann.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Absorption Spectroscopy J. Stöhr, NEXAFS SPECTROSCOPY,
Ultrafast Experiments Hangwen Guo Solid State II Department of Physics & Astronomy, The University of Tennessee.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
Ultrabroadband detection of THz radiation and the sensitivity estimation of photoconductive antenna Itoh lab Michitaka Bitoh H. Shimosato et al. Ultrafast.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Low Emittance RF Gun Developments for PAL-XFEL
A. Doyuran, L. DiMauro, W. Graves, R. Heese, E. D. Johnson, S. Krinsky, H. Loos, J.B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, Y. Shen, J.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Magnetization dynamics
Free Electron Lasers (I)
Generation and detection of ultrabroadband terahertz radiation
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Distortion of single-shot EO sampling techniques.
Terahertz Applications by THz Time Domain Spectroscopy
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial Hiroki Okada Asida Lab. Osaka Univ.
M. Hosaka a, M. Katoh b, C. Szwaj c, H. Zen b M. Adachi b, S. Bielawski c, C. Evain c M. Le Parquier c, Y. Takashima a,Y. Tanikawa b Y. Taira b, N. Yamamoto.
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
Adams Accelerator Institute 10 - E. Wilson - 1/24/ Slide 1 Lecture 14 ACCELERATOR PHYSICS MT 2004 E. J. N. Wilson.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Beam Manipulation by Self-Wakefields John Power Argonne Wakefield Accelerator Facility Sergey Antipov, Alexei Kanareykin Euclid Techlabs LLC.
Switching with Ultrafast Magnetic Field Pulses Ioan Tudosa.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
Laser-driven Terahertz frequency transverse deflectors (?) Steven Jamison Accelerator Science and Technology Centre (ASTeC) STFC Daresbury Laboratory S.P.
1 Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
X-band Based FEL proposal
Coherent THz radiation source driven by pre-bunched electron beam
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
S.M. Polozov & Ko., NRNU MEPhI
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Ultrashort (few cycles) Pulse Generation in (IR-THz) FELs
Tunable Electron Bunch Train Generation at Tsinghua University
TERASPARC Characterization of the THz source
Gu Qiang For the project team
Two color FEL experiment
Enrica Chiadroni LNF-INFN 20 aprile 2010
FCC ee Instrumentation
BC2 Commissioning Parameters
Review of Application to SASE-FELs
LCLS Commissioning Parameters
LCLS bunch length monitor utilizing coherent radiation
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Explanation of the Basic Principles and Goals
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Introduction to Free Electron Lasers Zhirong Huang
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
Enhanced Self-Amplified Spontaneous Emission
Presentation transcript:

Linear and Pump-Probe applications of THz Spectroscopy: The case of Elettra, Bessy-II, and SPARC S. Lupi Dipartimento di Fisica, INFN-University of Rome La Sapienza, and Italy SISSI Synchrotron Infrared Source for Spectroscopy and Imaging

Outline THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz

Outline THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz

THz Coherent radiation production from III Generation Machines: Bessy-II and Elettra Emission in the FIR/THz range is drastically enhanced. reference orbit: L = 240 m LL bunch,  p momentum compaction factor:  p/p  =  L/L Bessy-II IRIS Beamline U. Schade et al, PRL 2003 A. Perucchi et al,IP&T 2007 ELETTRA SISSI Beamline CSR Gl Take Home Message III Generation Machines High Rep Rate: 500 MHz Low-Energy per pulse: pJ Several ps bunch length Needed to compress the bunch  Special Operation Mode Linear THz Spectroscopy

Outline THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz

Superconductivity today: THz spectroscopy plays a fundamental role

... because Superconductivity is ruled by low-energy electrodynamics: Superconducting gap : THz range Spectral weight of condensate and penetration depth: THz Mediators of pairing (phonons, etc.): THz Range of sum rules: THz, Mid, or Near Infrared Free-carrier conductivity above T c : Infrared

Basic optics of Superconductors Superconducting gap observed if: -sample in the dirty-limit (2  <  ) -Cooper pairs in s-wave symmetry ∫ [   , T>Tc) -   , T =c/  ps Ferrel-Glover-Tinkham Rule Drude absorption Drude reflectance  22 Minimum excitation energy: Cooper-pair breaking 2 

Superconductivity in Boron doped Diamond Oppenheimer Diamond carats Takenouchi-Kawarada-Takano Diamond 0.7 carats

B-Diamond: a text book example of BCS superconductivity s-wave Dirty-Limit Regime; 2  (0)=12±1 cm -1  2  /k B T C =3.2 ± 0.5  ≤  (T) : R n (  ) = 1 - [8  (T)/  p 2 ] 1/2  ≤ 2  (T) : R s (  ) = 1 Peak at 2  in Rs/Rn M. Ortolani et al, PRL, 2006

Mott-Hubbard Insulator to Metal Transitions Filling-Controlled MIT: static (doping) Bandwidth-Controlled MIT: static ( pressure) U Coulomb repulsion t Bandwidth

Mott-Hubbard Insulator to Metal Transition E. Arcangeletti et al, PRL (2007) VO 2 Pressure (Bandwidth) controlled MIT V2O3V2O3

Outline THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz

Breaking Cooper Pairs Dynamically Photoionization For hω>2Δ light breaks Cooper pairs 1)Optical Pump - Optical Probe (THz Probe) hω>>2Δ  Recombination Dynamics affected by excess phonons 2) THz Pump – THz Probe hω THz ≥2Δ  Intrinsic dynamics Alternative processes if hω<2Δ Δ=Δ(J, B) at fixed T<Tc The high E (~MV) THz field may induce currents exceeding the critical current (breaking the Superconducting State with an Electric Field) The high B (~1 T) THz field may be larger that Bc (breaking the Superconducting State with a magnetic Field)

THz controlled Mott-Hubbard MIT THz pulses in the MV/cm range can drive lattice displacements in the pm range Filling-Controlled MIT: static (Doping) Dynamic (Phoexcitation) Bandwidth-Controlled MIT: static ( Pressure) dynamic (Radiation) U Coulomb repulsion t Bandwidth Dynamical modulation of U through intramolecular pumping

Outline THz Linear Spectroscopy: Applications in Superconductivity and Strongly Correlated Materials; THz Radiation production from III Generation Machines: the case of Bessy-II and Elettra; Pump-Probe THz Experiments in Superconductivity and Strongly Correlated Materials; High-Power/Sub-ps THz

Acceleration section Ondulator Section THz Section Laser Free Electron Laser Beam energy 155–200 MeV Bunch charge 1 nC Rep. rate 10 Hz Peak current 100 A  n 2 mm-mrad  n (slice) 1 mm-mrad   0.2% Bunch length (FWHM) 10 ps-100 fs

Transition Radiation occurs when an electron crosses the boundary between two different media Intensity is 0 on axis and peaked at  Polarization is radial CTR-THz Radiation

Velocity Bunching: Bunch length versus injection phase If the beam injected in a long accelerating structure at the crossing field phase and it is slightly slower than the phase velocity of the RF wave, it will slip back to phases where the field is accelerating, but at the same time it will be chirped and compressed ps/mm  t = 160 fs Velocity Bunching ps/mm  t = ps Time

CTR-THz emission 500 fs, 250 pC 300 fs, 500 pC 2 ps E. Chiadroni et al., J.Phys E. Chiadroni et al. APL 2012 S Lupi et al., J. Phys 2012 M. Ferrario et al., NIM A 2011

CTR measured emission from LINACs Electron beam energy Charge  t (bandwidth) THz pulse energy E-field Brookhaven (1) 120 MeV~ 1 nC- (2 THz) ≈100  J MV/cm SPARC (2) 120 MeV500 pC120 fs (10 THz) ≈100  J MV/cm FLASH (3) 1.2 GeV600 pC- (4 THz) >100  J MV/cm LCLS (4) 14.5 GeV350 pC50 fs (40 THz) 140  J >20 MV/cm (1) Y. Shen et al., Phys. Rev. Lett. 99, (2007) (2) E. Chiadroni, et al., APL 2012 (3) M.C. Hoffmann et al., Optics Letters 36, 4473 (2011) (4) D. Daranciang et al., Appl. Phys. Lett. 99, (2011)

Perspectives Increase machine energy  increase of bunch-charge (1 nC); Tailoring the electronic bunch shape  extended spectral coverage (20 THz); Narrow band THz radiation  Smith-Purcell Radiation:

Narrow-band and Tunable THz Radiation

Acknowledgments A. Perucchi E. Karanzoulis (ELETTRA) U. Schade E.Chiadroni and M. Ferrario (LFN-INFN): TERASPARC project Thank for your attention